269 research outputs found
A multiple replica approach to simulate reactive trajectories
A method to generate reactive trajectories, namely equilibrium trajectories
leaving a metastable state and ending in another one is proposed. The algorithm
is based on simulating in parallel many copies of the system, and selecting the
replicas which have reached the highest values along a chosen one-dimensional
reaction coordinate. This reaction coordinate does not need to precisely
describe all the metastabilities of the system for the method to give reliable
results. An extension of the algorithm to compute transition times from one
metastable state to another one is also presented. We demonstrate the interest
of the method on two simple cases: a one-dimensional two-well potential and a
two-dimensional potential exhibiting two channels to pass from one metastable
state to another one
Extended skyrmion lattice scattering and long-time memory in the chiral magnet FeCoSi
Small angle neutron scattering measurements on a bulk single crystal of the
doped chiral magnet FeCoSi with =0.3 reveal a pronounced effect
of the magnetic history and cooling rates on the magnetic phase diagram. The
extracted phase diagrams are qualitatively different for zero and field cooling
and reveal a metastable skyrmion lattice phase outside the A-phase for the
latter case. These thermodynamically metastable skyrmion lattice correlations
coexist with the conical phase and can be enhanced by increasing the cooling
rate. They appear in a wide region of the phase diagram at temperatures below
the -phase but also at fields considerably smaller or higher than the fields
required to stabilize the A-phase
Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi
We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron
Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of
the helimagnetic transition in FeCoSi with = 0.30. In contrast
to the sharp transition observed in the archetype chiral magnet MnSi, the
transition in FeCoSi is gradual and long-range helimagnetic
ordering coexists with short-range correlations over a wide temperature range.
The dynamics are more complex than in MnSi and involve long relaxation times
with a stretched exponential relaxation which persists even under magnetic
field. These results in conjunction with an analysis of the hierarchy of the
relevant length scales show that the helimagnetic transition in
FeCoSi differs substantially from the transition in MnSi and
question the validity of a universal approach to the helimagnetic transition in
chiral magnets
Effective dynamics using conditional expectations
The question of coarse-graining is ubiquitous in molecular dynamics. In this
article, we are interested in deriving effective properties for the dynamics of
a coarse-grained variable , where describes the configuration of
the system in a high-dimensional space , and is a smooth function
with value in (typically a reaction coordinate). It is well known that,
given a Boltzmann-Gibbs distribution on , the equilibrium
properties on are completely determined by the free energy. On the
other hand, the question of the effective dynamics on is much more
difficult to address. Starting from an overdamped Langevin equation on , we propose an effective dynamics for using conditional
expectations. Using entropy methods, we give sufficient conditions for the time
marginals of the effective dynamics to be close to the original ones. We check
numerically on some toy examples that these sufficient conditions yield an
effective dynamics which accurately reproduces the residence times in the
potential energy wells. We also discuss the accuracy of the effective dynamics
in a pathwise sense, and the relevance of the free energy to build a
coarse-grained dynamics
Elucidation of the metabolites of the novel psychoactive substance 4-methyl-N-ethyl-cathinone (4-MEC) in human urine and pooled liver microsomes by GC-MS & LC-HR-MS/MS techniques and of its detectability by GC-MS or LC-MS(n) standard screening approaches
4-methyl-N-ethcathinone (4-MEC), the N-ethyl homologue of mephedrone, is a novel psychoactive substance of the beta-keto amphetamine (cathinone) group. The aim of the present work was to study the phase I and phase II metabolism of 4-MEC in human urine as well as in pooled human liver microsome (pHLM) incubations. The urine samples were worked up with and without enzymatic cleavage, the pHLM incubations by simple deproteinization. The metabolites were separated and identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS). Based on the metabolites identified in urine and/or pHLM, the following metabolic pathways could be proposed: reduction of the keto group, N-deethylation, hydroxylation of the 4-methyl group followed by further oxidation to the corresponding 4-carboxy metabolite, and combinations of these steps. Glucuronidation could only be observed for the hydroxy metabolite. These pathways were similar to those described for the N-methyl homologue mephedrone and other related drugs. In pHLM, all phase I metabolites with the exception of the N-deethyl-dihydro isomers and the 4-carboxy-dihydro metabolite could be confirmed. Glucuronides could not be formed under the applied conditions. Although the taken dose was not clear, an intake of 4-MEC should be detectable in urine by the GC-MS and LC-MS(n) standard urine screening approaches at least after overdose
Metamagnetism in the XXZ model with next-to-nearest-neighbor coupling
We investigate groundstate energies and magnetization curves in the one
dimensional XXZ-model with next to nearest neighbour coupling and
anisotropy () at T=0. In between the familiar
ferro- and antiferromagnetic phase we find a transition region -- called
metamagnetic phase -- where the magnetization curve is discontinuous at a
critical field .Comment: LaTeX file (text) + 5 PS files (5 figures
Research priorities to increase vaccination coverage in Europe (EU joint action on vaccination)
BACKGROUND: Deciding how best to invest in healthcare is never an easy task and prioritization is therefore an area of great interest for policymakers. Too low public vaccine confidence, which results in insufficient vaccine uptake, remains an area of concern for EU policy-makers. Within the European Joint action on vaccination, a work-package dedicated to research aims to define tools and methods for priority-setting in the field of vaccination research. We therefore propose a prioritization framework to identify research priorities towards generating and synthesizing evidence to support policies and strategies aiming at increasing vaccine coverage. MATERIALS/METHODS: We used a multi-criteria decision analysis (MCDA) method inspired by the Child Health and Nutrition Research Initiative developed by Rudan et al. This quantitative methodology follows a series of steps involving different groups of experts and relevant stakeholders. The first step consists in identifying key research questions through a broad consultation. In parallel, a first group of experts is tasked to select criteria for prioritization of research questions, taking into consideration the ultimate goal of the exercise. Another group of experts is then requested to assess a weight to each of the criteria, using pair-wise comparisons. The final step consists in gathering experts who will assess each research question against the weighted criteria. This evaluation leads to assigning a score to each individual research question, which can then be ranked in order of priority. RESULTS: We focused our work on four pre-selected pilot vaccines (pertussis, measles containing combination vaccines, influenza and HPV). The consultation generated 124 questions, which were secondarily sorted and re-worded to obtain 27 questions to be ranked. Criteria for setting priorities were the following: accessibility, answerability, deliverability, disease prevalence/incidence, effectiveness, equity, generalization, and territory. During a final face-to-face meeting international experts ranked the 27 questions and agreed on a consensual list of six top-priorities. CONCLUSIONS: We have developed a transparent, evidence-based rigorous framework to defined key research questions to generate evidence towards the design of policies and strategies to increase vaccine coverage. Results were disseminated broadly and submitted to the EC for potential funding in the context of The Horizon Europe Program. The same process will be conducted in 2021 to identify vaccination research priorities regarding all vaccines used in the EU as well as COVID-19 vaccines
The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair
P53-binding protein 1 (53BP1) mediates DNA repair pathway choice and promotes checkpoint activation. Chromatin marks induced by DNA double-strand breaks and recognized by 53BP1 enable focal accumulation of this multifunctional repair factor at damaged chromatin. Here, we unveil an additional level of regulation of 53BP1 outside repair foci. 53BP1 movements are constrained throughout the nucleoplasm and increase in response to DNA damage. 53BP1 interacts with the structural protein NuMA, which controls 53BP1 diffusion. This interaction, and colocalization between the two proteins in vitro and in breast tissues, is reduced after DNA damage. In cell lines and breast carcinoma NuMA prevents 53BP1 accumulation at DNA breaks, and high NuMA expression predicts better patient outcomes. Manipulating NuMA expression alters PARP inhibitor sensitivity of BRCA1-null cells, end-joining activity, and immunoglobulin class switching that rely on 53BP1. We propose a mechanism involving the sequestration of 53BP1 by NuMA in the absence of DNA damage. Such a mechanism may have evolved to disable repair functions and may be a decisive factor for tumor responses to genotoxic treatments
Clinical Practice Guidelines for Childbearing Female Candidates for Bariatric Surgery, Pregnancy, and Post-partum Management After Bariatric Surgery
Emerging evidence suggests that bariatric surgery improves pregnancy outcomes of women with obesity by reducing the rates of gestational diabetes, pregnancy-induced hypertension, and macrosomia. However, it is associated with an increased risk of a small-for-gestational-age fetus and prematurity. Based on the work of a multidisciplinary task force, we propose clinical practice recommendations for pregnancy management following bariatric surgery. They are derived from a comprehensive review of the literature, existing guidelines, and expert opinion covering the preferred type of surgery for women of childbearing age, timing between surgery and pregnancy, contraception, systematic nutritional support and management of nutritional deficiencies, screening and management of gestational diabetes, weight gain during pregnancy, gastric banding management, surgical emergencies, obstetrical management, and specific care in the postpartum period and for newborns
- …