169 research outputs found

    Potential use of deodorised water extracts: polyphenol-rich extract of Thymus pannonicus All. as a chemopreventive agent

    Get PDF
    Deodorised water extracts of aromatic plants are obtained as by-products of essential oil isolation and usually discarded as waste. However, phytochemical composition of these extracts encourages their further utilization as food additives or functional food ingredients. In this study we investigated phytochemical composition, antioxidant and in vivo antiproliferative activity of deodorised water extract of Thymus pannonicus All. (DWE). HPLC analysis revealed rosmarinic acid (RA) (71.11 +/- 1.54 mg/g) as the most abundant constituent of the extract, followed by salvianolic acid H (14.83 +/- 0.79 mg/g, calculated as RA). DWE exhibited pronounced antioxidant activity in vitro, in FRAP and DPPH tests (FRAP value: 7.41 mmol Fe/g and SC50: 3.80 mu g/g, respectively). Using the model of Ehrlich carcinoma cells in mice that were treated with DWE prior, at the time, and after tumour cells implantation, the tumour growth suppression and redox status of malignant cells (i.e., activities of antioxidant enzymes, level of glutathione and intensity of lipid peroxidation) were followed. DWE applied as pretreatment caused disturbance of antioxidant equilibrium as well as apoptosis/necrosis of up to 90% EAC cells. Results obtained in the present study revealed chemopreventive potential and possibility of T. pannonicus DWE usage. High content of RA and other phenolic compounds explains, at least in part, the observed effects

    Anti-proliferative activity of the quassinoid NBT-272 in childhood medulloblastoma cells

    Get PDF
    BACKGROUND: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to correlate with anaplasia and unfavorable prognosis. In neuroblastoma – an embryonal tumor with biological similarities to MB – the quassinoid NBT-272 has been demonstrated to inhibit cellular proliferation and to down-regulate c-MYC protein expression. METHODS: To study MB cell responses to NBT-272 and their dependence on the level of c-MYC expression, DAOY (wild-type, empty vector transfected or c-MYC transfected), D341 (c-MYC amplification) and D425 (c-MYC amplification) human MB cells were used. The cells were treated with different concentrations of NBT-272 and the impact on cell proliferation, apoptosis and c-MYC expression was analyzed. RESULTS: NBT-272 treatment resulted in a dose-dependent inhibition of cellular proliferation (IC50 in the range of 1.7 – 9.6 ng/ml) and in a dose-dependent increase in apoptotic cell death in all human MB cell lines tested. Treatment with NBT-272 resulted in up to 90% down-regulation of c-MYC protein, as demonstrated by Western blot analysis, and in a significant inhibition of c-MYC binding activity. Anti-proliferative effects were slightly more prominent in D341 and D425 human MB cells with c-MYC amplification and slightly more pronounced in c-MYC over-expressing DAOY cells compared to DAOY wild-type cells. Moreover, treatment of synchronized cells by NBT-272 induced a marked cell arrest at the G1/S boundary. CONCLUSION: In human MB cells, NBT-272 treatment inhibits cellular proliferation at nanomolar concentrations, blocks cell cycle progression, induces apoptosis, and down-regulates the expression of the oncogene c-MYC. Thus, NBT-272 may represent a novel drug candidate to inhibit proliferation of human MB cells in vivo

    Simple quantitative tests to validate sampling from thermodynamic ensembles

    Full text link
    It is often difficult to quantitatively determine if a new molecular simulation algorithm or software properly implements sampling of the desired thermodynamic ensemble. We present some simple statistical analysis procedures to allow sensitive determination of whether a de- sired thermodynamic ensemble is properly sampled. We demonstrate the utility of these tests for model systems and for molecular dynamics simulations in a range of situations, includ- ing constant volume and constant pressure simulations, and describe an implementation of the tests designed for end users.Comment: 48 pages, 4 figure

    Using metadynamics to explore complex free-energy landscapes

    Get PDF
    Metadynamics is an atomistic simulation technique that allows, within the same framework, acceleration of rare events and estimation of the free energy of complex molecular systems. It is based on iteratively \u2018filling\u2019 the potential energy of the system by a sum of Gaussians centred along the trajectory followed by a suitably chosen set of collective variables (CVs), thereby forcing the system to migrate from one minimum to the next. The power of metadynamics is demonstrated by the large number of extensions and variants that have been developed. The first scope of this Technical Review is to present a critical comparison of these variants, discussing their advantages and disadvantages. The effectiveness of metadynamics, and that of the numerous alternative methods, is strongly influenced by the choice of the CVs. If an important variable is neglected, the resulting estimate of the free energy is unreliable, and predicted transition mechanisms may be qualitatively wrong. The second scope of this Technical Review is to discuss how the CVs should be selected, how to verify whether the chosen CVs are sufficient or redundant, and how to iteratively improve the CVs using machine learning approaches

    Altering Chemosensitivity by Modulating Translation Elongation

    Get PDF
    BACKGROUND: The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Emu-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents. METHODOLOGY/PRINCIPAL FINDINGS: Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Emu-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor. CONCLUSION/SIGNIFICANCE: Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations

    Targeting tumor-associated macrophages by anti-tumor Chinese materia medica

    Get PDF
    Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology
    corecore