
Metastability is characteristic of many interesting sys
tems in materials science and biophysics. Technically 
speaking, metastability arises when the probability 
distribution as a function of the atomic coordinates 
has at least two peaks (the metastable states) separated 
by a region in which the probability is many orders 
of magni tude lower. The prototypical example of this 
situation is a molecule that can undergo a chemi
cal reaction: the two probability peaks correspond to 
the reactant and the product states. Other secondary 
probability peaks, if present, correspond to the inter
mediate states of the reaction. In practical terms, meta
stability means that a molecular dynamics (MD) or a 
Monte Carlo (MC) simu lation is likely to remain stuck 
in only one probability maximum (typically corre
sponding to an energy minimum) for the duration of 
the run. Since the early days of molecular simulations, 
researchers have attempted to develop approaches to 
fight this problem, with the goal of observing all the 
relevant meta stable states in the limited time that can 
be afforded in a simulation.

A possible route to this goal involves ‘filling’ the free 
energy minima of the metastable states in a controlled 
way and thereby enabling the system to explore all states. 
To do so requires first choosing, on the basis of chemi
cal or physical intuition, a low dimensional collective 
variable (CV), namely, a function of the coordinates 
that takes a different value in all the relevant metastable  

states. For example, in a chemical reaction in which a 
specific bond in a molecule should break, an appropriate 
CV would be the distance between the two atoms form
ing the bond. We denote the CV by S(x), where x denotes 
the coordinates of the system (such as positions of all 
atoms). Given a CV, the probability distribution P(x) can 
be reduced to a function of the CV by integrating P(x) 
over all x under the constraint S(x) = s:

∫P s xP x δ s S x( ) = d ( ) ( − ( )) (1)

In this discussion, we assume that P(x) is the canonical 
distribution associated with a potential energy function 
V(x): ∝ ∕P x V x T( ) exp(− ( ) ), where T is the temper
ature (to simplify notation, we use units in which the 
Boltzmann constant is one). If the CV is well chosen, 
the metastable states appear as separate and well defined 
peaks in P(s). The free energy as a function of s is

F s T P s( ) = − log( ( )) (2)

Correspondingly, for a system with metastable states, the 
free energy as a function of a good CV has (at least) two 
well defined minima.

If one is fortunate, for the molecular system under 
study both a good CV and an approximation B(s) of  
the negative of the free energy are known. In that case, the 
metastability problem in that system can be considered 
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as solved. This is because MD or MC simulations can 
be run with a modified potential ∼V x V x B S x( ) = ( ) + ( ( )).  
The probability distribution as a function of the CV 
becomes

∼

′

∫P s C x δ s S x

C

( ) = d e ( − ( ))

= e

(3)

V x B S x
T

F s B s
T

−
( )+ ( ( ))

−
( )+ ( )

where C and C′ are normalization constants. Therefore, 
if B(s) ≈ −F(s), the probability distribution as a function 
of s is approximately flat. The simulation is no longer 
confined in a metastable state and can freely diffuse 
across the barrier. Although the simulation is performed 
under the action of a potential that is modified by an 
external bias, it is straightforward to estimate the unbi
ased free energy from the biased probability distribu
tion of s, because taking the logarithm of both sides of 
equation 3 gives ∼F s B s T P s C( ) = − ( ) − log( ( )) + , where 
C is a constant.

This ‘trick’ has been well known since the early days 
of molecular simulations1, but its practical applicability 
is hindered by three problems:
•	 Before performing the simulation, what the free 

energy looks like is unknown, and a good choice for 
B(s) is in general unavailable.

•	 In many cases, finding a good CV is non trivial. It is 
possible to build, based on intuition, a CV capable of 
distinguishing the metastable states, but this variable 
is not necessarily good for describing the transition, 
as we discuss.

•	 In other cases, even the relevant metastable states  
are unknown. For example, one may wish to study 
the conformational transition of a complex biomole
cule, knowing only the structure of the molecule in 
one state. This situation is possibly the most relevant 
for practical applications.

Metadynamics2 is an algorithm that can satisfacto
rily solve the first problem by building B in an iterative 
process. However, it does not provide a CV even if, as 
we discuss, it enables verification that a CV is good 

and improvement of the CV for a successive simula
tion. Moreover, and possibly most importantly, meta
dynamics allows simultaneous use of multiple CVs. 
This, as we discuss, makes it possible to be less picky in 
the choice of the CVs and, in some special cases, even 
address the problem of unknown metastable states.

Several reviews discussing the theory of metadyna
mics and its applications in a number of different fields 
are available3–8. We give a brief introduction to meta
dynamics, but this Technical Review is primarily focused 
on the technical decisions that must be made before per
forming a metadynamics simulation. In particular, we 
discuss the advantages and disadvantages of the differ
ent variants of this approach, the proper assessment of 
errors, the detection of critical cases where metadynam
ics is difficult to apply, the recently introduced methods 
to determine CVs using machine learning techniques 
and the available implementations of the method.

Introduction to metadynamics
Metadynamics was originally developed in the spirit of 
time stepper based approaches9. Metadynamics embed
ded two ideas in that framework: filling the free energy 
minima, similar to what was proposed in ref.10, and bias
ing the dynamics by a history dependent potential, as 
was previously done in taboo search11,12, local elevation13 
and Wang–Landau sampling14. However, to understand 
more clearly the working principle of metadynamics, it is 
convenient to heuristically introduce it as a limiting case 
of adaptive umbrella sampling (AUS)15, which is another 
method for constructing a bias potential. AUS requires 
running a sequence of relatively short simulations, here 
labelled by an index r. Each simulation is biased by a dif
ferent external potential Br(s), built iteratively (fig. 1a–d) 
by: running a simulation under the action of the poten
tial V(x) + Br(S(x)); computing the histogram Hr(s) of 
the CV, with the first part of the simulation discarded, 
to allow an appropriate equilibration; updating the bias:

B s B s T H s( ) = ( ) + log( ( )) (4)r r r+1

In practice, to use Br as an external bias in an MD simu
lation, it is important to represent the logarithm of the 
histogram by a smooth function, for example, a spline. 
A drawback of AUS is that approximating this function 
can be non trivial, because the histogram is affected by 
non uniform errors. Initially, the bias is zero. Because 
the simulation is short, the system remains stuck in the 
first metastable state. The histogram H1(s) spans only 
that minimum. The key idea of AUS is that the loga
rithm of this histogram is an estimate of the free energy, 
restricted to the region that has been explored so far.  
In other words, F s T H s( ) + log( ( ))r  is approximately 
constant in the region of the minimum. In the second 
run, the system, owing to the effect of the bias, explores 
a wider range of the CV, performing a transition to the 
second minimum. The new histogram is approximately 
flat in the region already explored in the first run, and it 
provides information on the shape of the free energy on 
a wider range. In the example in (fig. 1), the bias potential 
has already ‘filled’ the free energy landscape after three 
iterations. At this point, Br(s) ≈ −F(s).

Key points

•	Metadynamics	makes	it	possible	to	accelerate	conformational	transitions	between	
metastable	states,	broadening	the	scope	of	molecular	dynamics	simulations.

•	Like	other	enhanced	sampling	methods,	metadynamics	requires	the	introduction		
of	low-	dimensional	descriptors	(collective	variables)	whose	choice	affects	the	rate		
at	which	transitions	are	enhanced.	The	ideal	collective	variable	should	take	different	
values	not	only	in	all	the	relevant	metastable	states	but	also	in	the	transition	states	
between	them.

•	The	appropriate	collective	variables	can	be	found	by	trial	and	error	or	designed	
automatically	using	methods	inspired	by	machine	learning.

•	Two	variants	of	metadynamics	are	commonly	used,	namely	ordinary	and	well-	
	tempered	metadynamics.	The	former	has	the	advantage	of	inducing	transitions	
between	the	metastable	states	even	if	the	collective	variable	is	not	ideal.	The	latter	
has	the	advantage	of	providing	an	exact	estimator	of	the	free	energy.

•	Metadynamics	can	be	used	in	combination	with	most	molecular	dynamics	software	
packages	by	taking	advantage	of	dedicated	software	libraries	that	implement	the	
method	and	a	large	number	of	collective	variables.
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Metadynamics can be viewed as a limiting case of 
AUS. Imagine making the simulation time between 
updates of the bias so short that the value of the CV does 
not change notably during the run. In this case, the label 
r designing the different runs in AUS can be replaced by 
a label t, labelling simulation time. The histogram Ht(s) 
becomes a single peak, localized in the close neighbour
hood of st = S(xt). The key idea of metadynamics is to 
approximate the logarithm of this histogram with a 
simple, differentiable function. Typically, a Gaussian of 
width σ and height w is used:
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Initially, the Gaussians are all localized in the first free 
 energy minimum (fig. 1e–h). These Gaussians induce 
larger and larger fluctuations in the CV (fig. 1h). After 
some time, the first free energy minimum is almost 
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Fig. 1 | The working principles of adaptive umbrella sampling and metadynamics. a–c ∣ The first (panel a), second 
(panel b) and third (panel c) iterations of adaptive umbrella sampling. The black curve, identical in the three panels, is 
the free energy that has to be reconstructed. The purple curve in panels b and c is the sum of the free energy and of the 
bias in the second iteration (panel b) and third iteration (panel c). The points with error bars at the bottom of the panels 
represent the histogram H of the collective variable (CV) s estimated in each iteration. d ∣ The CV s as a function of time 
in the three iterations. e–g ∣ The sum of the free energy and of the metadynamics bias potential (equation 7; blue lines) 
at three different times marked by arrows in panel h, along with the free energy (black lines). h ∣ The CV s as a function 
of time in a metadynamics simulation.

Nature reviews | Physics

T e c h n i c a l  R e v i e w s



completely filled by Gaussians (fig. 1e) and the system 
performs a transition to the second minimum. This 
second minimum is also filled with Gaussians (fig. 1f). 
After that moment, the CV starts diffusing freely between 
the two minima (fig. 1h). The sum of the Gaussians now 
compensates almost exactly the free energy (fig. 1g). This 
sum can be therefore used to estimate F(s). The two para
meters w and σ can be tuned to control the speed at which 
the free energy landscape is filled and, thus, flattened. 
If larger Gaussians are used, the bias will grow quickly, 
but the system will be strongly out of equilibrium. If, 
instead, the Gaussians are small, metadynamics becomes 
a quasi equilibrium process, very similar to AUS. The 
precise role of these parameters is discussed below.

Replacing the logarithm of the histogram in equation 4  
with a Gaussian in equation 6 can be viewed as a conve
nient way to smooth the former, in a spirit similar to 
kernel density estimators16. For example, to compute the 
free energy as a simultaneous function of three different 
CVs, in AUS it is first necessary to compute a histogram 
as a function of three coordinates, and then represent 
its logarithm by a regular and differentiable function.  
In metadynamics, the function is built as a sum of three 
dimensional Gaussians localized along the trajectory 
followed by the system in CV space. As has been shown 
in many applications, and rigorously demonstrated for 
model dyna mics, equation 7 provides a good approx
imation to the negative free energy in three dimensions 
or even more. The ability to compute the free energy as a 
function of multiple CVs is the most important practical  
advantage of metadynamics with respect to other methods.

The formulation of equation 7 makes it apparent that 
in metadynamics the coordinates of the system evolve 
under the action of a non Markovian process, that is, 
the forces are history dependent: the dynamics at time t  
is biased by an external potential defined by a sum of 
Gaussians localized on the sequence of values taken by 
the CV up to that moment. Before the introduction of 
metadynamics, approaches such as local elevation13 used 
the idea of enhancing sampling using Gaussians without 
attempting to estimate the free energy from the sampled 
states. The most important contribution of the work in 
which metadynamics was introduced2 was to conjecture 
that the history dependent potential in equation 7 can 
be used to estimate the free energy.

The non Markovian nature of the dynamics makes 
its theoretical description more complex. However, by 
explicitly considering the external bias as a dynamic 
variable, the resulting dynamics is fully Markovian in an 
extended space, the coordinates x and the bias B(s) (ref.17). 
In these variables, the evolution of the system at time t 
depends only on its state at that time. When compared 
with the heuristic derivation above, the demonstration 
of ref.17 makes the assumption of adiabatic separation 
between the biased CV and the other degrees of freedom 
of the system but allows for an exact demonstration that 
is valid also in the case of a finite Gaussian deposition 
rate. The existence of such an exact demonstration is the 
most important conceptual difference with respect to 
AUS. In this formulation, it becomes natural to treat the 
bias potential in the same way as an ordinary observable 
in a finite temperature MD or MC run: its instantaneous 

shape is not particularly meaningful, because it is affected 
by fluctuations. Instead, the relevant free energy esti
mator is not the bias itself, but its time average, in which 
the fluctuations become progressively smaller. These 
topics are treated extensively in the next section.

Because the amplitude of the fluctuations in the 
bias potential is proportional to the height of the added 
Gaussian w, it is possible to reduce these fluctuations 
during the simulation by suitably reducing w. One 
possi ble way to do so is to employ well tempered meta
dynamics18, in which the height of the Gaussians is cho
sen to be proportional to a decaying exponential function 
of the potential deposited in the currently visited point of 
the CV space. Then, equation 6 becomes
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where ΔT is a parameter that controls how quickly the 
Gaussian height is decreased. Often, ΔT is written in 
terms of a so called bias factor γ = T T

T
+ Δ . It can be shown 

that in well tempered metadynamics, the height of the 
Gaussian deposited at a given point decreases propor
tionally to the inverse of the time the simulation spent at 
that point18. This one over time relationship is commonly 
used for the learning rate in stochastic minimizations in 
machine learning approaches19, because it is guaranteed 
to converge20. However, by using a height that implicitly 
depends on the position in the CV space, in the long time 
limit, the system does not sample a flat distribution. The 
bias potential does not converge to −F(s) but rather  
to a fraction of the free energy F s− ( )T

T T
Δ
+ Δ  that is known 

a priori, and the system thus samples the distribution  
∝P exp(− )F s

T T
( )

( + Δ ) . Therefore, ΔT has the role of both 
dam ping the fluctuations of the estimator and controll
ing the effective temperature at which the chosen CV is  
sampled. In non well tempered metadynamics, this 
effect ive temperature is infinite. The scheme can be fur
ther generalized to control the fluctuations of the estimator  
and the effective temperature of the CV independently20.

An important difference between well tempered 
and non well tempered metadynamics relates to the 
state reached at long times. If boundary conditions are 
properly treated, non well tempered metadynamics is 
guaranteed to reach a stationary state in which the bias 
potential fluctuates. This stationary state is conditional 
on filling the relevant free energy wells. Well tempered 
metadynamics, instead, reaches a quasi equilibrium 
state, in which the bias potential provides an exact esti
mator for the free energy18,20. Such a quasi equilibrium 
state is guaranteed for only an infinitely long trajectory. 
It might thus be convenient to heuristically use the time 
average of the bias potential as a better estimator for the 
free energy surface also in well tempered metadynamics 
(as discussed in the next section).

Choosing the CVs
The capability of metadynamics to accelerate rare event 
sampling and to reconstruct free energy landscapes 
crucially depends on the employed CVs (fig. 2). This 
dependence is common to all methods based on adding 
a bias potential that only depends on selected CVs.
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CVs are arbitrary functions of the atomic coordinates 
and, because they are usually fewer than the number of 
atomic coordinates, CVs provide a low dimensional 
projection of the conformational space. For a multistable 
system, a minimum criterion for this low dimensional 
projection is that different meta stable states should 
correspond to different values of the CVs. If this con
dition is not satisfied (fig. 2a), any bias potential added 
to one state will equally disfavour all the other states 
that correspond to the same value of the CVs (fig. 2d). 
Even if the potential energy landscape has two minima, 
the free energy as a function of x has a single mini
mum. In this condition, metadynamics is not able to 

accelerate in any manner the transitions between the two  
minima (fig. 2g).

A second requirement is that the CVs should be able 
to distinguish transition states. Indeed, metadynamics 
tends to work in a similar manner to biological enzymes, 
in that it accelerates transitions by stabilizing the transi
tion state relative to reactant and product states. If the 
CV distinguishes the metastable states, but not the tran
sition state (fig. 2b), the transition will not be enhanced. 
The corresponding free energy as a function of x (fig. 2e) 
has two minima, but the value of the CV at the transition 
state approximately coincides with the value of the CV in 
states with lower free energy that are part of the basin of 
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attraction of reactants and products. In this case, under 
the action of metadynamics, the CV reaches a perfectly 
diffusive dynamics (fig. 2h). However, this behaviour is 
not an indication of convergence: after the first tran
sition is observed after approximately 5,000 steps, the 
dynamics explores only the product state and a second
ary minimum. Therefore, the bias potential estimates 
the free energy without taking into account the reac
tant state. Indeed, the transitions between reactant and 
product are not enhanced at all by a bias acting on the 
CV, and transitions between reactant and product can 
happen due to only thermal fluctuations. As discussed 
below, in such a situation, the bias potential in equation 7  
cannot be used to estimate the free energy. Instead, the 
well tempered version of the bias, defined in equation 8, 
asymptotically provides a correct estimate. However, the 
bias does not accelerate the transition between the two 
minima, and therefore convergence is not substantially 
enhanced with respect to unbiased MD.

Metadynamics effectively works only if the CV 
takes different values in the metastable states and in the 
transition state between them (fig. 2c). In other words, 
it must be possible to deduce with certainty from the 
value of the CV whether the system is in one metastable 
state or the other, or in the transition state. In this situa
tion, metadynamics induces several transitions between 
the two metastable states (fig. 2f,i), and the free energy 
can be reliably estimated from the bias in equation 7 or 
in equation 8.

A further requirement is that the number of employed 
CVs should not be too large. Filling a multidimensional 
space becomes more expensive as the dimensionality 
of the space grows. Because the overall idea of meta
dynamics is to disfavour the conformations that have 
been already visited, if the number of CVs is too large, 
the system will never return to exactly the same value of 
all the CVs. Approaches that employ replicas to allow a 
large number of CVs to be biased alternately21 or simul
taneously22 can be used to alleviate this requirement. 
In the first case, bias exchange metadynamics, each rep
lica biases a single CV, so that a large number of CVs can 
be simultaneously probed. In the second case, multiple 
independent biases are constructed to flatten the dis
tribution of multiple CVs using well tempered meta
dynamics. All CVs are biased in all replicas, but the ΔT 
parameter is modulated across the replica ladder, so that 
one replica provides unbiased sampling and the other 
replicas provide the capability to easily cross barriers.  
In both cases, coordinates are exchanged between repli
cas using an acceptance ratio that depends on the value of 
the biased CV of the different replicas. Another approach, 
parallel bias metadynamics23, reproduces the character of 
bias exchange metadynamics by using a single replica for 
which the weight (or probability) for each of the variables 
to be biased is computed on the fly, thus with the practical 
advantage of allowing simulation of a single replica.

Over the years, many other variants of metadyna
mics have been developed to address the problem of 
reconstructing the free energy in high dimensions.
•	A popular strategy is to use a variable describing a 

path in a multidimensional CV space24,25, as discussed 
in the section on automatic determination of the CVs.

•	 In ref.26, metadynamics is combined with stand
ard umbrella sampling to sample orthogonal CVs 
simultaneously.

•	 In ref.27, it is proposed to perform metadynamics on 
a 1D variable embedded in multidimensional CV 
space, the direction of which is learned on the fly 
during the simulation.

•	 In altruistic metadynamics28, the computational cost 
is reduced by simultaneously simulating multiple dif
ferent molecular systems, predicting simultaneously 
their free energy surfaces.

•	 In ref.29, the free energy estimator of metadynamics 
and of adaptive force bias30 are combined in a sin
gle history dependent bias, substantially boosting 
convergence speed.

•	Another variant of metadynamics has been devel
oped to deal with the situation in which convergence 
is hindered by the presence of large free energy 
basins stabilized by the entropy. This problem 
occurs in protein–ligand binding, for instance, for 
which an entropic bottleneck arises from the need 
of the ligand to find its way to the binding pocket. 
In such cases, in which these bottlenecks are known 
a priori, their effect can be moderated by setting 
proper restraints31.

Finally, we note that although metadynamics was 
initially introduced to explore and reconstruct the free 
energy along biased variables, by suitable re weighting 
techniques32–35 it can also be used to reconstruct the free 
energy along non biased variables. However, in these 
cases, one should pay particular attention to make sure 
that analysed variables are sufficiently sampled.

Computing the free energy and its error
The manner of estimating the free energy and con
trolling the error is different in ordinary metadynamics 
and in its well tempered variant. Therefore, we consider 
these two cases separately.

Ordinary metadynamics. In ordinary metadynamics, 
if the CVs are well chosen, after a time tfill all the free  
energy minima are filled with Gaussians and the dyna
mics becomes diffusive in CV space (fig. 2i). After this 
time, the bias potential continues to change, because new 
Gaussians are added again and again. However, Bt(s) 
becomes stationary, that is, its shape remains qualita
tively the same at different times (Supplementary Fig. 1). 
Bt(s) behaves like an ordinary observable in a finite 
 temperature molecular simulation: after a transient time 
(the equilibration time), the observable does not remain 
constant, but keeps on fluctuating. A meaningful esti
mator of its thermodynamic average is the time average. 
Similarly, in metadynamics, the instantaneous value of 
the bias potential is not meaningful, but rather its time 
average after tfill, which plays the role of an equilibra
tion time. Therefore, at time t the best estimator of the 
negative of the free energy is

′
′∑B s

t t
B s( ) = 1

−
( ) (9)t

t t

t

t
fill = fill
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This average converges exactly to −F(s) for t → ∞ 
if the dynamics in the CV is adiabatically separated 
from the dynamics in the other variables17,36. Even if this 
condition is violated, if transitions between reactants and 
products are observed on a timescale compatible with 
diffusion on a flat landscape, the average in equation 9 
converges to the free energy within numerical accuracy. 
This has been verified numerically in a metadynamics 
simulation of a lattice model in which the free energy  
is known analytically37. However, if under the action 
of metadynamics transitions between reactants and 
products happen only rarely (fig. 2h), the time average  
is not guaranteed to converge to the negative of the 
free energy. In particular, transitions should be consid
ered as rare if they happen on a timescale that is com
parable to that of an unbiased plain MD simulation,  
which implies that they are not accelerated by the meta
dynamics bias. We remark that if in a metadynamics 
simulation one observes a behaviour like that in fig. 2h,  
one should conclude that the CV is not appropriate, stop  
the simulation and look for a more appropriate variable.

The statistical accuracy of the estimator in equation 9 
is controlled by the same techniques used to monitor 
the accuracy of the average value of an observable in a 
finite temperature run. For example, one can perform  
a block analysis by first splitting the simulation time after 
tfill in blocks and estimating the error by looking at the 
difference in the average bias potentials in the blocks. 
One can then monitor how the error estimator depends 
on the number of blocks. If the total averaging time 
t − tfill is substantially larger than the correlation time, 
the error estimate will be approximately independent  
of the number of blocks (Supplementary Fig. 1).

Well- tempered metadynamics. A similar analysis can be 
performed for well tempered metadynamics. However, 
in this case, the changes in the bias potential itself are 
not a good indication of the convergence of the simu
lation, because, by construction, the increments in the 
bias potential become smaller and smaller as the simu
lation progresses. Qualitatively, it is necessary to check 
that, even if the bias potential becomes quasi constant, 
the system still undergoes transitions between the rele
vant free energy minima. Quantitatively, these transi
tions can be observed by performing a block analysis 
of the histogram of the biased CV. Indeed, the stand
ard free energy estimator used in well tempered meta
dynamics can be replaced with the standard umbrella 
sampling formula F s T H s V s( ) = − log ( ) − ( ), where H 
is the histogram of the visited points in the CV space, 
which must be computed with a proper smoothing33. 
This procedure is equivalent to re weighting each visi
ted frame of coordinates q with a factor proportional 
to ∕V s q t Texp( ( ( ), ) )final , where tfinal is the simulation 
length. The error on the free energy can be estimated by:
•	Discarding a suitable initial part of the simulation, 

during which the main free energy wells are filled
•	 Breaking the following part of the simulation into 

blocks and computing the histogram of the CVs in 
each block, and its error, using block analysis

•	Converting the error on the histogram to an error on 
the free energy estimator.

In particular, the error on the histogram can be 
computed by exploiting the relationship between 
the bias potential and the histogram itself18, that is, 

∝N s C( ) + exp( )V s
T
( )

Δ
, where C is an arbitrary constant. 

The histogram accumulated in the ith block is thus 
proportional to exp( ) − exp( )B s t i L

T
B s t iL

T
( , + ( + 1) )

Δ
( , + )

Δ
fill b fill b , 

where Lb is the length of the block. The error on the free  
energy can thus be estimated as
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where Nb is the number of blocks and the variance should 
be computed across all the blocks (Supplementary Fig. 1).

The free energy differences between reactants and 
products evaluated for two of the model systems shown 
in fig. 2 are reported in Supplementary Table 1. In parti
cular, in the simpler case in which CVs correctly identify 
the transition state as well as the reactant and product 
states, both methods provide a correct estimate. However, 
in the more difficult case in which CVs cannot identify 
the transition state, ordinary metadynamics provides a 
biased result and well tempered metadynamics requires 
a simulation time comparable to the one of standard MD 
to converge to the correct result.

Automatic learning of CVs
As discussed, cases in which metadynamics does not 
converge or converges to an incorrect result can be 
often ascribed to a common problem: the chosen CVs 
do not correctly describe the relevant barriers, a prob
lem that is easy to detect if the simulation is analysed 
properly. On encountering this problem, metadynam
ics practitioners need to search for a ‘better’ CV capable 
of describing correctly the conformational change of 
interest. This need perhaps explains why many different 
CVs have been developed in recent years, especially in 
the community using metadynamics. Here, we review 
recently developed approaches for ‘learning’ the correct 
CVs automatically. These are summarized in Table 1.

We first describe the so called path CVs24,25. These 
variables are based on the definition of a series of ref
erence structures for the system under investigation.  
If a transition from a state A to a state B is to be studied, 
these reference structures are ideally located between 
A and B (fig. 3). A progressive CV is then defined using 
the following exponential average

∑
∑

s r
i

( ) =
e

e
(11)i

λd

i
λd

−

−

i

i

where di is the squared distance between the current 
atomic configuration and the ith reference structure, 
and λ is a smoothing parameter. This exponential aver
age identifies which of the reference structures is closest 
to the current one and assigns to the CV a value that 
interpolates between the indexes of those structures.  
A metadynamics simulation can then be used to enforce 
transitions between A and B and vice versa by biasing this 
CV. The procedure can be generalized to vector indexes 

Nature reviews | Physics

T e c h n i c a l  R e v i e w s



rather than scalar ones to allow for a higher dimensional 
embedding of the configurational space38. Importantly, 
it is possible to optimize the location of the landmark 
structures through an iterative series of simulations. 
This can be done using a procedure24 inspired by the 
nudged elastic band method39. At each new simula
tion, the reference structures are changed to become 
more similar to the real intermediates observed in the 
MD simulation. The actual definition of the CV is thus 
different at every new iteration. Ideally, the intermediate 
structures relax towards a path that passes through the 
transition state and, after a sufficient number of itera
tions, a metadynamics simulation biasing this CV is able 
to make the system diffuse from A to B and vice versa. 
In ref.25, a progression CV with a definition similar to 
equation 11 was introduced. In this case, however, the 
definition of the path CV is evolved during the meta
dynamics simulation, potentially speeding up the search 
for the optimal path.

The function defined in equation 11 allows a high 
dimensional representation (coordinates of the atoms) 
to be reduced to a lower dimensional one (a single CV). 
More generally, arbitrary features can be used as a starting 
point for a dimensional reduction of this type. Clearly, if 
some prior knowledge is available, it is possi ble to exploit 
it to define the distances di in an already reduced space. 
All the automatic methods used to construct CVs are  
based on the idea of constructing a small number of  
linear or nonlinear functions of a larger set of features 
that are chosen a priori.

One of the possible criteria used in dimensional 
reduction algorithms is that of preserving the distance 
between structures computed using the full set of coor
dinates. This is what is done in classic multidimensional 
scaling, for instance40. However, distances between struc
tures are typically informative only for a narrow range of 
values. Diffusion maps can be used to tackle this issue41. 
In this method, a fictitious random walk connecting 
microstates that are close to each other in the initial fea
ture space is constructed, and the slow modes of this 
random walk are assigned as the larger distances in the 
low dimensional representation. The sketch map algo
rithm instead constructs a low dimensional embedding 
in which only distances in a selected range are preserved 

in the procedure. Specifically, sigmoid functions of the 
distances in the initial feature space are used to tune 
the distance range that is considered relevant for the 
dimensional reduction42.

Recently, procedures inspired by machine learning 
have been used to design variables that are capable 
of distinguishing reactants and products. Indeed, CVs of 
this type are closely related to representations provided 
by supervised learning algorithms, in which a paramet
ric representation is optimized to correctly distinguish 
labelled examples that are provided in advance. For 
instance, support vector machines and logistic regres
sions have been used to classify folded and unfolded 
states of a protein, with the classifier then used as a CV to 
perform enhanced sampling43. A similar approach based 
on linear discriminant analysis has also been used44. 
This latter approach was applied to the characterization 
of chemical reactions, for example45,46.

The methods discussed above aim at either finding 
a low dimensional embedding that correctly represents 
the structures seen in a preliminary run, or distinguish
ing pre assigned basins in the energetic landscape of 
the system. However, these methods do not explicitly 
take into account how good these variables would be 
for representing the kinetics of the system. The ideal 
CV for describing a transition between two metastable 
states R and P is the so called committor function47. The 
committor of a configuration x to the metastable state R 
is the probability that a trajectory starting from x reaches 
the state R before P. Finding the committor explicitly 
is possible in only simple model systems, but several 
approaches have been developed to estimate its value, 
and parameterize the committor48. These approaches 
can in principle be used to find an appropriate CV to 
perform metadynamics.

As discussed above, good CVs typically exhibit 
large free energy barriers that are removed when an 
incorrect dimensional reduction is done, because such 
dimensional reduction mixes the true transition states 
with other more stable states. The idea of spectral gap 
optimization49 is to select linear combinations of putative 
CVs and choose the one with the slowest transition rate 
between two minima. Under the assumption that differ
ent CVs have comparable diffusion constants, this would 

Table 1 | comparison of methods for automatically finding cVs

Method Advantages Disadvantages

Path CV24,25,38 Allows the description of complex 
reaction pathways; can be iteratively 
optimized

Requires knowledge of the initial and final 
states

Committor parameterization48 Provides the best possible reaction 
coordinate

Requires knowledge of the initial and final 
states; requires running many short MD 
trajectories and can be very costly

Spectral gap optimization49 Simple and computationally cheap Requires knowledge of the initial and final 
states; finds the best variable in a set, but does 
not allow parameterization of a new one

Machine 
learning

Distribution 
based41–46

Only requires ensemble averages Resulting CVs might suboptimally describe 
barriers

Dynamics 
based50,51,53–55

Explicitly takes into account the 
kinetics of the system

Requires long unbiased trajectories or 
re- weighting methods

CV, collective variable; MD, molecular dynamics.
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be the one with the largest barrier separating reactants 
and products (fig. 3b). To recover the free energy along 
putative linear combinations, it is crucial to perform a 
proper re weighting. With a similar goal to spectral gap 
optimization, time independent component analysis 
(TICA) constructs a linear combination of pre selected 
features that is ‘as slow as possible’, that is, with the larg
est possible autocorrelation time. The first few compo
nents of a pre computed TICA can be used as biased 
CVs for metadynamics50. A TICA based approach was 
also introduced in ref.51, in which the time independent 
components (TICs) are directly computed during the 
biased simulation, thus allowing conformational changes 
that are only visible in biased sampling to be studied. 
We note that metadynamics performed with the correct 
CV changes the relaxation dynamics of the system sub
stantially because, ideally, the slowest dynamics takes 
place in the hyperplane of a constant CV. Therefore, 
to compute the correct TICs, it is necessary to apply a 
re weighting technique. The method of ref.51 was used 
to identify slow molecular motions in complex chemi
cal reactions52. Following a similar idea, it was recently 
shown that variational auto encoders can be used to 
construct nonlinear functions that optimally represent 
the kinetics of the system53,54. A related approach was 
used in ref.55, in which a linear encoder was combined 
with a nonlinear decoder. In principle, limiting the 
encoder step to linear combinations allows the generated 
CVs to be easier to interpret.

Implementation
CVs are often defined by complicated functional forms, 
but they usually depend on the coordinates of a limited 
number of atoms. Moreover, the same CVs and the same 
variants of metadynamics can be used across different 
applications, such as ab initio and classical MD. For this 
reason, metadynamics is optimally implemented in a 
separate library — such as PLUMED56, COLVARS57 or 

SSAGES58 — which can then be used in combination 
with any MD code (Table 2). These libraries typically 
have their own input files that are read during initial
ization and are then called at every iteration of the MD 
simulation (fig. 4). Coordinates should be passed to the 
library. In some cases, this might lead to a slow down 
of the simulation, in particular if the MD engine stores 
the coordinates on a graphical processing unit but the 
library requires coordinates on the central processing 
unit. The library then computes the requested CVs and 
bias potentials, resulting in forces that should be added 
to those computed by the MD engine. In principle, 
metadynamics can also be used with MC simulations, 
although we are not aware of MC codes interfaced with 
the above mentioned libraries.

The typical aim of these libraries is to allow a user to 
add arbitrary bias potentials on chosen CVs. In particu
lar, substantial flexibility is usually given to the user in 
the choice of the CVs, because tuning their definition — 
either manually or automatically, as discussed above — is 
a crucial step in the application of any biasing technique. 
The code should then compute the derivatives of the ith 
CV si with respect to the atomic positions.

Arbitrary combinations of CVs can also be used. 
At least two of the above mentioned packages, COLVAR 
and PLUMED56,57, allow users to specify arbitrary alge
braic functions in their input that are then automati
cally differentiated. The possibility of using arbitrary 
combinations of CVs makes it possible to implement 
some of the automatically determined CVs discussed 
above directly in the input script. Although this option 
is often suboptimal from the performance point of view, 
it speeds up the development of new ideas.

The same approach can be used to implement any 
method based on the idea of adding a bias potential or a 
force to a set of chosen CVs. This is the reason why these 
packages typically provide the user with many other 
enhanced sampling methods based on biasing CVs, such 
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Fig. 3 | Three approaches for automatically finding the best cV. di is the squared distance between the current atomic 
configuration and the ith reference structure, and λ is a smoothing parameter. r represents the present coordinates of the 
system, and ri the coordinates in the ith milestone. s1, s2 and s3 represent possible collective variables (CVs). MD, molecular 
dynamics; TICA , time- independent component analysis.
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as umbrella sampling1, steered MD59 or other techniques 
that have been developed more recently.

Furthermore, whereas the calculation of metadyna
mics forces can be implemented by explicitly summing 
the history of visited conformation (as in equation 7), the 
computational cost is usually substantially decreased by 
accumulating the sum of Gaussian functions on a grid, 
so that cost of the calculation of the forces is independ
ent of the simulation length. The bias potential stored on 
the grid is updated using equation 6 and its cost grows 
exponentially with the number of biased CVs. For this 
reason, it is convenient to use interpolation schemes that 
make it possible to use grids that are less dense, thus 
accelerating the update of the potential.

The availability of the discussed features in the librar
ies PLUMED, COLVAR and SSAGES is summarized in 
Table 3. The PLUMED package is the most complete  
in terms of support for metadynamics variants, because 
it was developed by a community centred around the 
developers of the method, can be loaded at runtime as  
a plugin, and implements a number of analysis and 
post processing tools that might be crucial for dealing 
with advanced methods. The COLVARS package can be 
extended using tool command language and some of the 
unsupported features might be implemented using scripts 
that have been made available by the community. Finally, 
the SSAGES package is still at a pre release stage and thus 
its support is relatively limited. The documentation of 
these three packages can also be considered as a start
ing point to explore the wide range of CVs used in the 
literature. The PLUMED community has recently made 
available a public repository named PLUMED NEST 
containing data needed to reproduce enhanced sampling 
simulations, which can also be of great use to new users60.

Discussion and perspectives
Because of the success of metadynamics, several variants 
have been developed over the years, as discussed above. 
A question that naturally arises in applications is which 
variant should be used.

A preliminary observation is that the convergence 
of well tempered metadynamics has been proved rigo
rously in any condition and for any possible choice of the 
CV. Indeed, in this method, the bias potential asympto
tically does not change, making the approach technically 
equivalent to ordinary umbrella sampling. The approach 
requires choosing an extra parameter, the effective tem
perature ΔT in equation 8, whose optimal value depends 
on the height of the relevant barriers, which may not 
be known. A possible way to overcome the problem of 
choosing this parameter has been proposed61. However, 
as we already underlined, if the CV is not correctly 
chosen, the convergence speed of well tempered meta
dynamics is similar to that of ordinary MD, making it 
not useful.

Ordinary metadynamics is instead a process in which 
the dynamics happens in an extended space, including 
not only the coordinates but also the bias potential. This 
dynamics has the advantage of enforcing diffusion in the 
CV even when the latter is not correct. The properties of 
this dynamics have not yet been fully understood, and its 
convergence was rigorously proved only in conditions of 
adiabatic separation of the CV dynamics17. If this condi
tion is violated, systematic errors may arise, such as those 
observed in the examples described in this Technical 
Review, and as rigorously proven in ref.62. However, if the 
CVs are appropriately chosen, these errors are in practice 
well below the statistical accuracy of the free energy esti
mator37. Furthermore, in practical applications, in which 
adiabatic separation is often violated, it can be conven
ient to reconstruct the free energy a posteriori, not as an 
average of the bias potential, but using estimators based 

Table 2 | Availability of metadynamics in commonly used MD codes

MD code Native PLUMED cOLVARs ssAGEs

ACEMD68 No Yes No No

AMBER69 No Yes No No

CP2K70 Yes Yes No No

DLPOLY71 No Yes No No

DESMOND72 Yes No No No

GROMACS73 No Yes Yes Yes

i- Pi74 No Yes No No

HOOMD75 No No No Yes

L AMMPS76 Yesa Yes Yes Yes

NAMD77 Yesb Yes Yes No

OPENMD78 No No No Yes

OPENMM79 Yes Yes No No

ORAC80 Yes No No No

PINY- MD81 No Yes No No

QUANTUM- ESPRESSO82 No Yes No No

QBOX83 No No No Yes

The ‘native’ column refers to implementations of metadynamics that do not require any additional 
libraries. Compatibility with the three libraries discussed in this Technical Review is also indicated. 
Notice that these three libraries are currently under development and that this table reflects the 
respective documentation in October 2019. MD, molecular dynamics. aA copy of the COLVARS 
code is included in the official L AMMPS repository. bA copy of the COLVARS code is included in 
the official NAMD repository.

Terminate Terminate

MD engineLibrary

Initialize

Compute
biasing forces

Compute forces Compute CVs

Initialize

Propagate
positions 

Fig. 4 | Typical architecture of a library to perform 
metadynamics simulations. The library is initialized at the 
beginning of the simulation and usually needs a separate 
input file that specifies the options needed to perform 
metadynamics. At each step, coordinates are passed from 
the molecular dynamics (MD) engine to the library and 
additional forces are returned and added to the physical 
forces computed by the MD engine. The library is then 
finalized at the end of the simulation. CV, collective variable.
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on the mean force observed during the biased run57,63 or 
Gaussian process regression64.

To understand better the differences between these 
approaches, it is important to discuss what happens if the 
CVs are not appropriately chosen. In fig. 2, we presented 
three examples of 2D potential energy landscapes asso
ciated with systems with two metastable states. In two 
cases, in particular, the free energy as a function of the 
s1 coordinate is very similar: two minima separated by a 
barrier (fig. 2b,c). However, the capability of the method 
of estimating the free energy is strikingly different in 
the two cases. In one case, estimating the free energy is 
practically impossible: the CV identifies the two meta
stable states, but not the transition state between the 
two, and therefore the bias potential does not accelerate 
the transitions (fig. 2e,h). In fig. 5a, we show a potential 
energy landscape characterized by the presence of four 
minima. The free energy landscapes as a function of  
x and y (fig. 5b) are approximately flat, despite the 
presence of very substantial barriers in the 2D land
scape. In this case, if x is used as a CV, well tempered 

metadynamics is by construction unable to generate 
a bias potential that can enhance the sampling in the  
x direction; similarly if y is used as a CV. Indeed, at con
vergence, the bias potential is a constant, and this bias 
is not affected any longer by the new Gaussians, whose 
height becomes smaller and smaller at the end of the run.  
Therefore, the system will get stuck in one of the minima. 
In short, the problem is that a bias potential compensat
ing exactly the free energy does not necessarily make the 
landscape barrierless. The behaviour of ordinary meta
dynamics on this system is rather different: the approach 
by construction enforces transitions even when the CV 
is not correct, as long as the CV takes different values 
in the different minima. The system continues to per
form transitions and explore the free energy landscape. 
However, the bias potential is affected by large fluctua
tions, and the free energy estimate does not converge. 
Indeed, because the transition states are not identified 
correctly by the CV, forward and backward transitions 
might follow different paths, leading to hysteresis in the 
estimated free energy.

A possible way out of this problem is offered by rep
lica exchange methods. Metadynamics can be combined 
with parallel tempering65, CV tempering22 or solute 
tempering66 to enhance sampling in directions that are 
not directly biased. These approaches address, to some 
extent, the problem of metastability in degrees of free
dom that are orthogonal to the biased CV. Another way 
to address the same problem is to use bias exchange 
metadynamics21, an approach in which several meta
dynamics simulations are run in parallel and at the same 
temperature, each biasing a different CV. Exchanges of 
the coordinates between different replicas are attempted 
at regular time intervals, and accepted according to the 
Metropolis criterion. This approach makes it possible 
to use a very large number of CVs simultaneously, and 

Table 3 | Feature comparison of MTD libraries

MTD feature PLUMED cOLVARs ssAGEs

Ordinary MTD Yes Yes Yes

WT- MTD Yes Yes No

Grids Yes Yes Yes

Multiple walkers Yes Yes Yes

Bias exchange Yesa No No

Arbitrary CVs Yes Yes No

These three libraries are currently under development. This 
table reflects the respective documentation in October 2019. 
CV, collective variable; MTD, metadynamics; WT, well- tempered. 
aOnly in combination with GROMACS.
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dramatically reduces the hysteresis if all the relevant CVs 
are biased in at least one replica.

Using replica bias exchange in combination with 
well tempered metadynamics is delicate, because in this 
approach the simplest way to check whether the simu
lation is meaningful requires verifying that at the end 
of the simulation the system is able to diffuse through 
all the regions in which one wants to estimate the free 
energy. In a situation like the one depicted in fig. 5a, if a 
single replica is used, the CV tends to freeze in one of the 
local minima. If any replica exchange method is used, an 
accepted exchange move can induce a jump of the CV 
from one minimum to another. However, these jumps are 
not sufficient to ensure that the free energy estimator is 
correct. Instead, it should be verified that continuous tra
jectories, travelling across the space of available replicas, 
display transitions between the relevant states.

These considerations form a basis for some guide
lines for choosing among the different versions of meta
dynamics (fig. 5c). In our opinion, the well tempered 
version of metadynamics offers some advantages for 
estimating the free energy as a simultaneous function of 
two or more CVs. Indeed, this approach has been proved 
to converge rigorously, and makes it possible to perform 
the calculation without defining explicitly the region in 
which the free energy should be estimated: one simply 
chooses the maximum value of the free energy that one 
considers interesting, and the approach automatically 
fills the free energy minima to approximately that level. 
If one uses ordinary metadynamics to estimate the free  
energy in a multidimensional domain, one should fix the 
appropriate boundary conditions, restricting the dynam
ics in the domain6,37,67. If the correct CV is unknown, it may  
be approprate to use a method combining metadynamics 
and replica exchange. In biasexchange metadynamics, an 
arbitrarily large number of CVs can be biased simultane
ously. Because ordinary metadynamics forces transitions  

even when the CV is not correct, by using it in a bias 
exchange scheme it is possible to converge to a low 
dimensional free energy estimate even in the condition 
of fig. 5, where the free energy projected on a single  
variable is almost barrierless despite the presence of 
metastable states. Well tempered metadynamics instead 
might remain stuck unless the CV describes very well 
the transition state. Therefore, we see some advantages 
in using ordinary metadynamics with respect to the 
well tempered version in bias exchange methods.

The usefulness of metadynamics (and of any enhan
ced sampling method based on biasing CVs) is largely 
determined by its capability to identify an appropriate 
CV that describes the relevant transitions. Historically, 
CVs have been searched for by trial and error, and 
their discovery has been part of the process of under
standing the system under investigation. In our opinion, 
going beyond this protocol is the frontier of enhan
ced sampling methods. The community is well aware  
of the importance of this problem: recently, a number of 
approaches for the automatic search of CVs have been 
proposed, including approaches inspired by machine 
learning, as we discuss above. Automatic training pro
cedures allow the use of functions of arbitrary complex
ity, such as artificial neural networks. Although this can 
bring important progress, one should also consider that 
complex functional forms might be difficult to interpret 
and, in the end, could teach less about the investigated 
system. In addition, highly flexible functional forms 
might easily lead to situations where data are overfitted. 
We thus believe that finding a solution to the problem 
of automatically finding CVs while ensuring the appro
priate balance between accuracy, generality and inter
pretability, is still an open problem that will likely attract 
a lot of interest in the near future.
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