63 research outputs found

    Movement patterns of forest elephants (Loxodonta cyclotis Matschie, 1900) in the Odzala-Kokoua National Park, Republic of Congo

    Full text link
    [Otros] Les Ă©lĂ©phants de forĂȘt d'Afrique (Loxodonta cyclotis Matschie, 1900) sont des ingĂ©nieurs en Ă©cologie qui jouent un rĂŽle fondamental dans la dynamique de la vĂ©gĂ©tation. L'espĂšce constitue une prĂ©occupation immĂ©diate pour la conservation, mais elle est relativement peu Ă©tudiĂ©e. Pour combler cette lacune de connaissances, nous avons Ă©tudiĂ© les facteurs de dĂ©placements quotidiens (dĂ©placements linĂ©aires) des Ă©lĂ©phants de forĂȘt Âż caractĂ©risĂ©s par un ensemble de variables gĂ©ographiques, mĂ©tĂ©orologiques et anthropiques Âż dans le Parc National d'OdzalaÂżKokoua, en RĂ©publique du Congo. ConcrĂštement, nous avons utilisĂ© la forĂȘt d'arbres dĂ©cisionnels pour modĂ©liser et dĂ©mĂȘler les principaux facteurs environnementaux rĂ©gissant les dĂ©placements de six Ă©lĂ©phants de forĂȘt, Ă©quipĂ©s de colliers GPS et suivis pendant 16 mois. Les rĂ©sultats ont montrĂ© que les femelles se dĂ©plaçaient plus loin que les mĂąles, tandis que la prĂ©sence de routes ou d¿établissements humains perturbait le comportement des Ă©lĂ©phants, ce qui accĂ©lĂ©rait les dĂ©placements. Les Ă©lĂ©phants de forĂȘt se dĂ©plaçaient plus rapidement dans les cours dÂżeau et dans les forĂȘts dont le sousÂżbois Ă©tait dominĂ© par les forĂȘts de Marantaceae et les bais, mais se dĂ©plaçait plus lentement dans les savanes. Enfin, les zones inondables Âż characterisĂ©es par lÂżaltitude et les prĂ©cipitations accumulĂ©es Âż et les tempĂ©ratures plus Ă©levĂ©es empĂȘchaient des dĂ©placements plus longs. Nous espĂ©rons que ces rĂ©sultats amĂ©lioreront les connaissances sur les mouvements des espĂšces Ă  travers diffĂ©rents habitats, ce qui serait bĂ©nĂ©fique pour la gestion de leur conservation.[EN] African forest elephants (Loxodonta cyclotis Matschie, 1900) are ecological engineers that play a fundamental role in vegetation dynamics. The species is of immediate conservation concern, yet it is relatively understudied. To narrow this knowledge gap, we studied the drivers of daily movement patterns (linear displacements) of forest elephantsÂżcharacterised by a set of geographical, meteorological and anthropogenic variablesÂżin the OdzalaÂżKokoua National Park, Republic of Congo. Explicitly, we used conditional random forest to model and disentangle the main environmental factors governing the displacements of six forest elephants,fitted with GPS collars and tracked over 16 months. Results indicated that females moved further distances than males, while the presence of roads or human settlements disrupted elephant behaviour resulting in faster displacements. Forest elephants moved faster along watercourses and through forest with understory dominated by Marantaceae forests and bais, but moved slower in savannahs. Finally, floodÂżprone areasÂżdescribed by elevation and accumulated precipitationÂżand higher temperatures prevented longer displacements. We expect these results to improve the knowledge on the species movements through different habitats, which would benefit its conservation management.The fieldwork was financed by African Parks. We are grateful to the Congolese wildlife authorities (MinistĂšre de l'Économie ForestiĂšre et de l'Environnement) for the permission to carry out this study, and we are deeply indebted to the director of the OKNP and to the conservation, wildlife monitoring and research manager, Erik Marav, respectively, for their continued support during our study. We are particularly grateful to Dr. Mike Kock, veterinarian, for collaring the elephants and to the field tracking team. We are also grateful to SĂ©an Cahill for the useful comments and English correction that helped improve this manuscript. The authors of the present study certify that they have no affiliations with or involvement in any organisation or entity with any financial or nonfinancial interest in the subject matter or materials discussed in this manuscript.Molina-Vacas, G.; Muñoz-Mas, R.; Martinez-Capel, F.; Rodriguez-Teijeiro, JD.; Le Fohlic, G. (2019). Movement patterns of forest elephants (Loxodonta cyclotis Matschie, 1900) in the Odzala-Kokoua National Park, Republic of Congo. African Journal of Ecology. 58:23-33. https://doi.org/10.1111/aje.12695S233358Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(0), 40-79. doi:10.1214/09-ss054Bermejo, M. (1999). Status and conservation of primates in Odzala National Park, Republic of the Congo. Oryx, 33(4), 323-331. doi:10.1046/j.1365-3008.1999.00081.xBirkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M., & Slotow, R. (2012). Animal Perception of Seasonal Thresholds: Changes in Elephant Movement in Relation to Rainfall Patterns. PLoS ONE, 7(6), e38363. doi:10.1371/journal.pone.0038363Blake, S., Deem, S. L., Strindberg, S., Maisels, F., Momont, L., Isia, I.-B., 
 Kock, M. D. (2008). Roadless Wilderness Area Determines Forest Elephant Movements in the Congo Basin. PLoS ONE, 3(10), e3546. doi:10.1371/journal.pone.0003546Blake, S., Douglas-Hamilton, I., & Karesh, W. B. (2001). GPS telemetry of forest elephants in Central Africa: results of a preliminary study. African Journal of Ecology, 39(2), 178-186. doi:10.1046/j.1365-2028.2001.00296.xBlake, S., Strindberg, S., Boudjan, P., Makombo, C., Bila-Isia, I., Ilambu, O., 
 Maisels, F. (2007). Forest Elephant Crisis in the Congo Basin. PLoS Biology, 5(4), e111. doi:10.1371/journal.pbio.0050111Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K., & Douglas-Hamilton, I. (2014). Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Movement Ecology, 2(1). doi:10.1186/2051-3933-2-2Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Breuer, T., Maisels, F., & Fishlock, V. (2016). The consequences of poaching and anthropogenic change for forest elephants. Conservation Biology, 30(5), 1019-1026. doi:10.1111/cobi.12679Buij, R., McShea, W. J., Campbell, P., Lee, M. E., Dallmeier, F., Guimondou, S., 
 Alonso, A. (2007). Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biological Conservation, 135(2), 189-201. doi:10.1016/j.biocon.2006.10.028CLARK, C. J., POULSEN, J. R., MALONGA, R., & ELKAN, Jr., P. W. (2009). Logging Concessions Can Extend the Conservation Estate for Central African Tropical Forests. Conservation Biology, 23(5), 1281-1293. doi:10.1111/j.1523-1739.2009.01243.xCrooks, K. R., Burdett, C. L., Theobald, D. M., King, S. R. B., Di Marco, M., Rondinini, C., & Boitani, L. (2017). Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences, 114(29), 7635-7640. doi:10.1073/pnas.1705769114De Beer, Y., & van Aarde, R. J. (2008). Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa’s arid savannas? Journal of Arid Environments, 72(11), 2017-2025. doi:10.1016/j.jaridenv.2008.07.002De Knegt, H. J., van Langevelde, F., Skidmore, A. K., Delsink, A., Slotow, R., Henley, S., 
 Prins, H. H. T. (2010). The spatial scaling of habitat selection by African elephants. Journal of Animal Ecology, 80(1), 270-281. doi:10.1111/j.1365-2656.2010.01764.xDi Marco, M., Buchanan, G. M., Szantoi, Z., Holmgren, M., Grottolo Marasini, G., Gross, D., 
 Rondinini, C. (2014). Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1643), 20130198. doi:10.1098/rstb.2013.0198Vladimir, D., & Jon, H. (2018). Mammalwatching: A new source of support for science and conservation. International Journal of Biodiversity and Conservation, 10(4), 154-160. doi:10.5897/ijbc2017.1162Elliot, N. B., Cushman, S. A., Loveridge, A. J., Mtare, G., & Macdonald, D. W. (2014). Movements vary according to dispersal stage, group size, and rainfall: the case of the African lion. Ecology, 95(10), 2860-2869. doi:10.1890/13-1793.1Fishlock, V., & Lee, P. C. (2013). Forest elephants: fission–fusion and social arenas. Animal Behaviour, 85(2), 357-363. doi:10.1016/j.anbehav.2012.11.004Friedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451GOBUSH, K. S., MUTAYOBA, B. M., & WASSER, S. K. (2008). Long-Term Impacts of Poaching on Relatedness, Stress Physiology, and Reproductive Output of Adult Female African Elephants. Conservation Biology, 22(6), 1590-1599. doi:10.1111/j.1523-1739.2008.01035.xGoldenberg, S. Z., Douglas-Hamilton, I., Daballen, D., & Wittemyer, G. (2016). Challenges of using behavior to monitor anthropogenic impacts on wildlife: a case study on illegal killing of African elephants. Animal Conservation, 20(3), 215-224. doi:10.1111/acv.12309Goldenberg, S. Z., Douglas-Hamilton, I., & Wittemyer, G. (2018). Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proceedings of the Royal Society B: Biological Sciences, 285(1879), 20180286. doi:10.1098/rspb.2018.0286Gonzalez-Voyer, A., GonzĂĄlez-SuĂĄrez, M., VilĂ , C., & Revilla, E. (2016). Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution, 70(6), 1364-1375. doi:10.1111/evo.12943Graham, M. D., Douglas-Hamilton, I., Adams, W. M., & Lee, P. C. (2009). The movement of African elephants in a human-dominated land-use mosaic. Animal Conservation, 12(5), 445-455. doi:10.1111/j.1469-1795.2009.00272.xHarris, G., Thirgood, S., Hopcraft, J., Cromsight, J., & Berger, J. (2009). Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Research, 7, 55-76. doi:10.3354/esr00173Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674. doi:10.1198/106186006x133933Johnson, D. D. P., Kays, R., Blackwell, P. G., & Macdonald, D. W. (2002). Does the resource dispersion hypothesis explain group living? Trends in Ecology & Evolution, 17(12), 563-570. doi:10.1016/s0169-5347(02)02619-8Kolowski, J. M., Blake, S., Kock, M. D., Lee, M. E., Henderson, A., Honorez, A., & Alonso, A. (2010). Movements of four forest elephants in an oil concession in Gabon, Central Africa. African Journal of Ecology, 48(4), 1134-1138. doi:10.1111/j.1365-2028.2009.01204.xLAURANCE, W. F., CROES, B. M., TCHIGNOUMBA, L., LAHM, S. A., ALONSO, A., LEE, M. E., 
 ONDZEANO, C. (2006). Impacts of Roads and Hunting on Central African Rainforest Mammals. Conservation Biology, 20(4), 1251-1261. doi:10.1111/j.1523-1739.2006.00420.xLoarie, S. R., Aarde, R. J. V., & Pimm, S. L. (2009). Fences and artificial water affect African savannah elephant movement patterns. Biological Conservation, 142(12), 3086-3098. doi:10.1016/j.biocon.2009.08.008Maisels, F., Strindberg, S., Blake, S., Wittemyer, G., Hart, J., Williamson, E. A., 
 Amsini, F. (2013). Devastating Decline of Forest Elephants in Central Africa. PLoS ONE, 8(3), e59469. doi:10.1371/journal.pone.0059469May, R., Dandy, G., & Maier, H. (2011). Review of Input Variable Selection Methods for Artificial Neural Networks. Artificial Neural Networks - Methodological Advances and Biomedical Applications. doi:10.5772/16004Metsio Sienne, J., Buchwald, R., & Wittemyer, G. (2013). Differentiation in mineral constituents in elephant selected versus unselected water and soil resources at Central African bais (forest clearings). European Journal of Wildlife Research, 60(2), 377-382. doi:10.1007/s10344-013-0781-0Mills, E. C., Poulsen, J. R., Fay, J. M., Morkel, P., Clark, C. J., Meier, A., 
 White, L. J. T. (2018). Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLOS ONE, 13(7), e0199387. doi:10.1371/journal.pone.0199387Muñoz-Mas, R., Fukuda, S., PĂłrtoles, J., & MartĂ­nez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics, 43, 24-37. doi:10.1016/j.ecoinf.2017.10.008Muñoz-Mas, R., Fukuda, S., Vezza, P., & MartĂ­nez-Capel, F. (2016). Comparing four methods for decision-tree induction: A case study on the invasive Iberian gudgeon ( Gobio lozanoi ; Doadrio and Madeira, 2004). Ecological Informatics, 34, 22-34. doi:10.1016/j.ecoinf.2016.04.011Poulsen, J. R., Koerner, S. E., Moore, S., Medjibe, V. P., Blake, S., Clark, C. J., 
 White, L. J. T. (2017). Poaching empties critical Central African wilderness of forest elephants. Current Biology, 27(4), R134-R135. doi:10.1016/j.cub.2017.01.023Poulsen, J. R., Rosin, C., Meier, A., Mills, E., Nuñez, C. L., Koerner, S. E., 
 Sowers, M. (2018). Ecological consequences of forest elephant declines for Afrotropical forests. Conservation Biology, 32(3), 559-567. doi:10.1111/cobi.13035Ripple, W. J., Abernethy, K., Betts, M. G., Chapron, G., Dirzo, R., Galetti, M., 
 Young, H. (2016). Bushmeat hunting and extinction risk to the world’s mammals. Royal Society Open Science, 3(10), 160498. doi:10.1098/rsos.160498SĂĄnchez‐Montoya, M. M., MoleĂłn, M., SĂĄnchez‐Zapata, J. A., & Tockner, K. (2016). Dry riverbeds: corridors for terrestrial vertebrates. Ecosphere, 7(10). doi:10.1002/ecs2.1508Schuttler, S. G., Blake, S., & Eggert, L. S. (2012). Movement Patterns and Spatial Relationships Among African Forest Elephants. Biotropica, 44(4), 445-448. doi:10.1111/j.1744-7429.2012.00889.xSHORT, J. C. (1983). Density and seasonal movements of forest elephant (Loxodonta africana cyclotis, Matschie) in Bia National Park, Ghana. African Journal of Ecology, 21(3), 175-184. doi:10.1111/j.1365-2028.1983.tb01179.xSnyman, S. L. (2012). The role of tourism employment in poverty reduction and community perceptions of conservation and tourism in southern Africa. Journal of Sustainable Tourism, 20(3), 395-416. doi:10.1080/09669582.2012.657202Stokes, E. J., Strindberg, S., Bakabana, P. C., Elkan, P. W., Iyenguet, F. C., MadzokĂ©, B., 
 Rainey, H. J. (2010). Monitoring Great Ape and Elephant Abundance at Large Spatial Scales: Measuring Effectiveness of a Conservation Landscape. PLoS ONE, 5(4), e10294. doi:10.1371/journal.pone.0010294Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1). doi:10.1186/1471-2105-8-25Strobl, C., Hothorn, T., & Zeileis, A. (2009). Party on! The R Journal, 1(2), 14. doi:10.32614/rj-2009-013Turkalo, A. K. (2013). Estimating forest elephant age. African Journal of Ecology, 51(3), 501-505. doi:10.1111/aje.12087Turkalo, A. K., Wrege, P. H., & Wittemyer, G. (2013). Long-Term Monitoring of Dzanga Bai Forest Elephants: Forest Clearing Use Patterns. PLoS ONE, 8(12), e85154. doi:10.1371/journal.pone.0085154Wasser, S. K., Brown, L., Mailand, C., Mondol, S., Clark, W., Laurie, C., & Weir, B. S. (2015). Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science, 349(6243), 84-87. doi:10.1126/science.aaa2457WILLIAMS, T. M. (1990). Heat transfer in elephants: thermal partitioning based on skin temperature profiles. Journal of Zoology, 222(2), 235-245. doi:10.1111/j.1469-7998.1990.tb05674.xWittemyer, G., Northrup, J. M., Blanc, J., Douglas-Hamilton, I., Omondi, P., & Burnham, K. P. (2014). Illegal killing for ivory drives global decline in African elephants. Proceedings of the National Academy of Sciences, 111(36), 13117-13121. doi:10.1073/pnas.1403984111WREGE, P. H., ROWLAND, E. D., THOMPSON, B. G., & BATRUCH, N. (2010). Use of Acoustic Tools to Reveal Otherwise Cryptic Responses of Forest Elephants to Oil Exploration. Conservation Biology, 24(6), 1578-1585. doi:10.1111/j.1523-1739.2010.01559.xYoung, K. D., Ferreira, S. M., & Van Aarde, R. J. (2009). Elephant spatial use in wet and dry savannas of southern Africa. Journal of Zoology, 278(3), 189-205. doi:10.1111/j.1469-7998.2009.00568.

    Illegal wildlife trade and the persistence of “plant blindness”

    Get PDF
    Societal Impact Statement A wide variety of plant species are threatened by illegal wildlife trade (IWT), and yet plants receive scant attention in IWT policy and research, a matter of pressing global concern. This review examines how “plant blindness” manifests within policy and research on IWT, with serious and detrimental effects for biodiversity conservation. We suggest several key points: (a) perhaps with the exception of the illegal timber market, plants are overlooked in IWT policy and research; (b) there is insufficient attention from funding agencies to the presence and persistence of illegal trade in plants; and (c) these absences are at least in part resultant from plant blindness as codified in governmental laws defining the meaning of “wildlife.” Summary This review investigates the ways in which “plant blindness,” first described by Wandersee and Schussler (1999, p. 82) as “the misguided anthropocentric ranking of plants as inferior to animals,” intersects with the contemporary boom in research and policy on illegal wildlife trade (IWT). We argue that plants have been largely ignored within this emerging conservation arena, with serious and detrimental effects for biodiversity conservation. With the exception of the illegal trade in timber, we show that plants are absent from much emerging scholarship, and receive scant attention by US and UK funding agencies often driving global efforts to address illegal wildlife trade, despite the high levels of threat many plants face. Our article concludes by discussing current challenges posed by plant blindness in IWT policy and research, but also suggests reasons for cautious optimism in addressing this critical issue for plant conservation

    Use and commercialization of Podocnemis expansa (Schweiger 1812) (Testudines: Podocnemididae) for medicinal purposes in two communities in North of Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Throughout Brazil a large number of people seek out reptiles for their meat, leather, ornamental value and supposed medicinal importance. However, there is a dearth of information on the use of reptiles in folk medicine. In North Brazil, the freshwater turtle, <it>Podocnemis expansa</it>, is one of the most frequently used species in traditional medicines. Many products derived from <it>P. expansa </it>are utilized in rural areas and also commercialized in outdoor markets as a cure or treatment for different diseases. Here we document the use and commercialization of <it>P. expansa </it>for medicinal purposes in the state of Parå, Northern Brazil.</p> <p>Methods</p> <p>Data were gathered through interview-questionnaires, with some questions left open-ended. Information was collected in two localities in Parå State, North of Brazil. In the City of Belém, data was collected through interviews with 23 herbs or root sellers (13 men and 10 women). Attempts were made to interview all animal merchants in the markets visited. In fishing community of the Pesqueiro Beach, interviews were done with 41 inhabitants (23 men and 18 women) and during the first contacts with the local population, we attempted to identify local people with a specialized knowledge of medicinal animal usage.</p> <p>Results</p> <p><it>P. expansa </it>was traded for use in traditional medicines and cosmetics. Fat and egg shells were used to treat 16 different diseases. Turtle fat was the main product sold. The demand for these products is unknown. However, the use of this species in folk medicine might have a considerable impact on wild population, and this must be taken into account for the conservation and management of this species.</p> <p>Conclusion</p> <p>Our results indicated that the use and commercialization of <it>P. expansa </it>products for medicinal purposes is common in North of Brazil. More studies regarding the use and commerce of Brazilian turtles are urgently needed in order to evaluate the real impact of such activities on natural populations. We hope that our findings about the trade and use of <it>P. expansa </it>in folk medicine will motivate further studies on the use of animals in folk medicine and its implications for conservation.</p

    Interpol and the Emergence of Global Policing

    Get PDF
    This chapter examines global policing as it takes shape through the work of Interpol, the International Criminal Police Organization. Global policing emerges in the legal, political and technological amalgam through which transnational police cooperation is carried out, and includes the police practices inflected and made possible by this phenomenon. Interpol’s role is predominantly in the circulation of information, through which it enters into relationships and provides services that affect aspects of governance, from the local to national, regional and global. The chapter describes this assemblage as a noteworthy experiment in developing what McKeon called a frame for common action. Drawing on Interpol publications, news stories, interviews with staff, and fieldwork at the General Secretariat in Lyon, France, the history, institutional structure, and daily practices are described. Three cases are analyzed, concerning Red Notices, national sovereignty, and terrorism, in order to explore some of the problems arising in Interpol’s political and technical operating arrangements. In conclusion, international and global policing are compared schematically, together with Interpol’s attempts to give institutional and procedural direction to the still-evolving form of global policing

    Does size matter for horny beetles? A geometric morphometric analysis of interspecific and intersexual size and shape variation in Colophon haughtoni Barnard, 1929, and C. kawaii Mizukami, 1997 (Coleoptera: Lucanidae)

    Get PDF
    Colophon is an understudied, rare and endangered stag beetle genus with all species endemic to isolated mountain peaks in South Africa’s Western Cape. Geometric morphometrics was used to analyse intersexual and interspecific variation of size and shape in the mandibles, heads, pronota and elytra of two sympatric species: Colophon haughtoni and Colophon kawaii. All measured structures showed significant sexual dimorphism, which may result from male-male competition for females. Female mandibles were too small and featureless for analysis, but male Colophon beetles possess large, ornate mandibles for fighting. Males had significantly larger heads and pronota that demonstrated shape changes which may relate to resource diversion to the mandibles and their supporting structures. Females are indistinguishable across species, but males were accurately identified using mandibles, heads and pronota. Male C. kawaii were significantly larger than C. haughtoni for all structures. These results support the species status of C. kawaii, which is currently in doubt due to its hybridisation with C. haughtoni. We also demonstrate the value of geometric morphometrics as a tool which may aid Colophon conservation by providing biological and phylogenetic insights and enabling species identification

    Understanding the drivers of mortality in African savannah elephants

    No full text
    Populations of African savannah elephants (Loxodonta africana) have been declining due to poaching, human–elephant conflict, and habitat loss. Understanding the causes of these declines could aid in stabilizing elephant populations. We used data from the Great Elephant Census, a 19-country aerial survey of savannah elephants conducted in 2014 and 2015, to examine effects of a suite of variables on elephant mortality. Independent variables included spatially explicit measures of natural processes and human presence as well as country-level socioeconomic measures. Our dependent variable was the carcass ratio, the ratio of dead elephants to live plus dead elephants, which is an index of recent elephant mortality. Carcass ratios are inversely proportional to population growth rates of elephants over the 4 yr prior to a survey. At the scale of survey strata (n = 275, median area = 1,222 km2), we found strong negative associations for carcass ratios with vegetation greenness at the time of the survey, overseas development aid to the country, and distance to the nearest international border. At the scale of ecosystems (n = 42, median area = 12,085 km2), carcass ratios increased with drought frequency and decreased with human density and overseas development aid to the country. Both stratum- and ecosystem-scale models explained well under one-half of the variance in carcass ratios. The differences in results between scales suggest that the drivers of mortality may be scale-specific and that the corresponding solutions may vary by scale as well

    Eastern Pyrenees and related foreland basins: pre-, syn- and post-collisional crustal-scale cross-sections

    No full text
    A new crustal-scale cross-section through the Eastern Pyrenees shows a minimum of 125 km of total shortening across the belt. Convergence rates of 6 mm/yr (during early and middle Eocene time) between the northern domain of the Iberian plate and Europe can be evaluated from calculated shortening rates in both sides of the orogen. Two stages of orogenic growth can be determined in the Eastern Pyrenean transect. A first stage (from Early Cretaceous to middle Lutetian time) is characterized by a low topography, submarine emplacement of the thrust front, fast rates of south-directed shortening up to 5mm/yr and widespread marine foreland deposition. This stage is also characterized by equivalent amounts of mountain erosion and detrital foreland accumulation. A second stage (middle Lutetian to late Oligocene) is marked by an increase in structural relief, subaerial emplacement, a decrease in shortening rates and widespread continental sedimentation. This leads towards a non-equilibrium condition in which mountain erosion is almost three times the foreland basin accumulation, leading to a large bypass of sediments towards the Atlantic before the final endorrheic stage of the basin. Erosion rates based on area conservation between middle Lutetian and present day sections in a twodimensional calculation indicate an average of 0.15 mm/yr. This rise is lower than middle Lutetian to early Miocene rock uplift rates in the Eastern Pyrenees, which account for 0.2-0.35 mm/yr, suggesting that erosion has been discontinuous through time. Inferred maximum river incision rates since the middle Miocene opening of the Ebro Basin towards the Mediterranean Sea account for less than 0.1 mm/yr.Work was founded by IBS Project, Joule II Programme (JOU2-CT92-110) and DGICYT projects PB91-0252 and PB91-0805

    Spatial genetic structure within size classes of the endangered tropical tree Guaiacum sanctum (Zygophyllaceae)

    No full text
    Premise of the study: Patterns of spatial genetic structure (SGS) were analyzed within a population of the endangered tropical tree Guaiacum sanctum located in northwestern Costa Rica. Documentation of these patterns provides insights into the gene dispersal mechanisms that play a central role in the maintenance and structure of genetic diversity within plant populations. ‱ Methods: Allozyme analyses were used to examine SGS in Palo Verde National Park, Costa Rica. The SGS was compared among three plots and different age classes. ‱ Key results: High levels of genetic diversity were found overall with a pooled genetic diversity of He = 0.302 ( ± 0.02). Selfi ng was proposed as the proximate cause for signifi cant levels of heterozygote defi ciency observed across size classes and plots. An unexpected lack of SGS ( rj < 0.02) was observed for all size classes, suggesting the mixing of seeds from several adults. A parent-pair parentage analysis indicated that at least 48% of the smaller individuals within a plot were produced by parents located at distances of at least 150 m. ‱ Conclusions: Populations of G. sanctum are established and maintained by bird-mediated, moderate- to long-distance seed dispersal, which results in a mixture of seeds from unrelated maternal individuals, effectively eliminating SGS. Proximity between individuals is, therefore, a poor predictor of family structure in this species. Long-distance seed dispersal, coupled with estimates of high genetic diversity, suggests that this endangered species has the potential for natural regeneration and restoration given the availability of suitable habitats.Idea WildUniversidad de Costa RicaOrganization for Tropical StudiesNational Science FoundationUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de BiologĂ­
    • 

    corecore