1,553 research outputs found

    Large variation in the boundary-condition slippage for a rarefied gas flowing between two surfaces

    Full text link
    We study the slippage of a gas along mobile rigid walls in the sphere-plane confined geometry and find that it varies considerably with pressure. The classical no-slip boundary condition valid at ambient pressure changes continuously to an almost perfect slip condition in a primary vacuum. Our study emphasizes the key role played by the mean free-path of the gas molecules on the interaction between a confined fluid and solid surfaces and further demonstrates that the macroscopic hydrodynamics approach can be used with confidence even in a primary vacuum environment where it is intuitively expected to fail

    Experimental observation of nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon

    Full text link
    Owing to its two dimensional electronic structure, graphene exhibits many unique properties. One of them is a wave vector and temperature dependent plasmon in the infrared range. Theory predicts that due to these plasmons, graphene can be used as a universal material to enhance nanoscale radiative heat exchange for any dielectric substrate. Here we report on radiative heat transfer experiments between SiC and a SiO2 sphere which have non matching phonon polariton frequencies, and thus only weakly exchange heat in near field. We observed that the heat flux contribution of graphene epitaxially grown on SiC dominates at short distances. The influence of plasmons on radiative heat transfer is further supported with measurements for doped silicon. These results highlight graphenes strong potential in photonic nearfield and energy conversion devices.Comment: 4 pages, 3 figure

    Casimir force measurements in Au-Au and Au-Si cavities at low temperature

    Full text link
    We report on measurements of the Casimir force in a sphere-plane geometry using a cryogenic force microscope to move the force probe in situ over different materials. We show how the electrostatic environment of the interacting surfaces plays an important role in weak force measurements and can overcome the Casimir force at large distance. After minimizing these parasitic forces, we measure the Casimir force between a gold-coated sphere and either a gold-coated or a heavily doped silicon surface in the 100-400 nm distance range. We compare the experimental data with theoretical predictions and discuss the consequence of a systematic error in the scanner calibration on the agreement between experiment and theory. The relative force over the two surfaces compares favorably with theory at short distance, showing that this Casimir force experiment is sensitive to the dielectric properties of the interacting surfaces.Comment: accepted for publication in Physical Review

    Proximity effect on hydrodynamic interaction between a sphere and a plane measured by Force Feedback Microscopy at different frequencies

    Full text link
    In this article, we measure the viscous damping G,G'', and the associated stiffness G,G', of a liquid flow in sphere-plane geometry in a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM)we are then able to measure simultaneously the static force, the stiffness and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus with a probe radius hundred times bigger. In this context the FFM can be called nano-SFA

    Imaging Electron Wave Functions Inside Open Quantum Rings

    Full text link
    Combining Scanning Gate Microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of electron probability density Ψ2(x,y)|\Psi|^{2}(x,y) in embedded mesoscopic quantum rings (QRs). The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wavefunction interferences. Simulations of both Ψ2(x,y)|\Psi|^{2}(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to Ψ2(x,y)|\Psi|^{2}(x,y).Comment: new titl

    Unveiling the intruder deformed 02+^+_2 state in 34^{34}Si

    Get PDF
    The 02+^+_2 state in 34^{34}Si has been populated at the {\sc Ganil/Lise3} facility through the β\beta-decay of a newly discovered 1+^+ isomer in 34^{34}Al of 26(1) ms half-life. The simultaneous detection of e+ee^+e^- pairs allowed the determination of the excitation energy E(02+^+_2)=2719(3) keV and the half-life T1/2_{1/2}=19.4(7) ns, from which an electric monopole strength of ρ2\rho^2(E0)=13.0(0.9)×103\times10^{-3} was deduced. The 21+^+_1 state is observed to decay both to the 01+^+_1 ground state and to the newly observed 02+^+_2 state (via a 607(2) keV transition) with a ratio R(21+^+_101+/21+\rightarrow0^+_1/2^+_102+\rightarrow0^+_2)=1380(717). Gathering all information, a weak mixing with the 01+^+_1 and a large deformation parameter of β\beta=0.29(4) are found for the 02+^+_2 state, in good agreement with shell model calculations using a new {\sc sdpf-u-mix} interaction allowing \textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Probing the role of Co substitution in the electronic structure of iron-pnictides

    Full text link
    The role of Co substitution in the low-energy electronic structure of Ca(Fe0.944_{0.944}Co0.056_{0.056})2_2As2_2 is investigated by resonant photoemission spectroscopy and density functional theory. The Co 3d-state center-of-mass is observed at 250 meV higher binding energy than Fe's, indicating that Co posses one extra valence electron, and that Fe and Co are in the same 2+ oxidation state. Yet, significant Co character is detected for the Bloch wavefunctions at the chemical potential, revealing that the Co 3d electrons are part of the Fermi sea determining the Fermi surface. This establishes the complex role of Co substitution in CaFe2As2, and the inadequacy of a rigid-band shift description.Comment: 4 pages, 4 figure

    Pathways into services for offenders with intellectual disabilities : childhood experience, diagnostic information and offence variables

    Get PDF
    The patterns and pathways into intellectual disability (ID) offender services were studied through case file review for 477 participants referred in one calendar year to community generic, community forensic, and low, medium, and maximum secure services. Data were gathered on referral source, demographic information, index behavior, prior problem behaviors, diagnostic information, and abuse or deprivation. Community referrers tended to refer to community services and secure service referrers to secure services. Physical and verbal violence were the most frequent index behaviors, whereas contact sexual offenses were more prominent in maximum security. Age at first incident varied with security, with the youngest in maximum secure services. Attention-deficit/hyperactivity disorder or conduct disorder was the most frequently recorded diagnosis, and severe deprivation was the most frequent adverse developmental experience. Fire starting, theft, and road traffic offenses did not feature prominently. Generic community services accepted a number of referrals with forensic-type behavior and had higher proportions of both women and people with moderate or severe ID

    Analytical and Numerical Demonstration of How the Drude Dispersive Model Satisfies Nernst's Theorem for the Casimir Entropy

    Full text link
    In view of the current discussion on the subject, an effort is made to show very accurately both analytically and numerically how the Drude dispersive model, assuming the relaxation is nonzero at zero temperature (which is the case when impurities are present), gives consistent results for the Casimir free energy at low temperatures. Specifically, we find that the free energy consists essentially of two terms, one leading term proportional to T^2, and a next term proportional to T^{5/2}. Both these terms give rise to zero Casimir entropy as T -> 0, thus in accordance with Nernst's theorem.Comment: 11 pages, 4 figures; minor changes in the discussion. Contribution to the QFEXT07 proceedings; matches version to be published in J. Phys.

    A prototyping method for the re-design of intensive perennial systems: the case of vineyards in France

    Get PDF
    The results of our re-design and experimentation of grapevine agrosystem, as well as on the other crops (Lançon et al., 2007 and Wery & Langeveld, 2010) show promising perspectives of the prototyping method to achieve high goals for performance and innovation. The complexity of the grapevine agrosystem (ie the number of technical interventions and their potential interactions) requires a strong systemic approach at the interface between the technical and biophysical dimensions of cropping systems (Rapidel et al., 2009). The approach must implement agro-ecological processes to greatly limit inputs. It also required a high innovation and significant changes in the grapevine agrosystem genetics, structure and management. Our results point out the need to re-design grapevine systems from the crop plantation with new varieties, new training systems and with intercrops aiming to improve ecosystem services and maintain a very high level of sustainability criteria
    corecore