454 research outputs found

    A numerical investigation of the asymmetric wake mode of a squareback Ahmed body - effect of a base cavity

    Get PDF
    Numerical simulations of the turbulent flow over the flat backed Ahmed model at Reynolds number Re≃4×105Re\simeq 4\times 10^{5} are conducted using a lattice Boltzmann solver to clarify the mean topology of the static symmetry-breaking mode of the wake. It is shown that the recirculation region is occupied by a skewed low pressure torus, whose part closest to the body is responsible for an extra low pressure imprint on the base. Shedding of one-sided vortex loops is also reported, indicating global quasi-periodic dynamics in conformity with the seminal work of Grandemange et al. (J. Fluid Mech., vol. 722, 2013, pp. 51–84). Despite the limited low frequency resolution of the simulation, power spectra of the lateral velocity fluctuations at different locations corroborate the presence of this quasi-periodic mode at a Strouhal number of St=0.16±0.03St=0.16\pm 0.03. A shallow base cavity of 5 %5\,\% of the body height reduces the drag coefficient by 3 %3\,\% but keeps the recirculating torus and its interaction with the base mostly unchanged. The drag reduction lies in a global constant positive shift of the base pressure distribution. For a deep base cavity of 33 %33\,\% of the body height, a drag reduction of 9.5 %9.5\,\% is obtained. It is accompanied by a large elongation of the recirculation inside the cavity that considerably attenuates the low pressure sources therein together with a symmetrization of the low pressure torus. The global quasi-periodic mode is found to be inhibited by the cavity.</jats:p

    On the three-dimensional temporal spectrum of stretched vortices

    Full text link
    The three-dimensional stability problem of a stretched stationary vortex is addressed in this letter. More specifically, we prove that the discrete part of the temporal spectrum is only associated with two-dimensional perturbations.Comment: 4 pages, RevTeX, submitted to PR

    Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems

    Get PDF
    Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems

    Fluid force and symmetry breaking modes of a 3D bluff body with a base cavity

    Get PDF
    International audienceA cavity at the base of the squareback Ahmed model at Re 4 × 10 5 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the geometry at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013b). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modelled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisym-metric bodies with base cavity

    Pâturages artificiels en savanes à saison sèche peu marquée

    Get PDF
    Après un bref résumé des conditions climatiques de la région de Bouaké (République de Côte-d'Ivoire), les auteurs exposent les résultats obtenus par une étude comparée de quelques plantes introduites: techniques d'implantation, rythme d'exploitation, longévité des pâturages, productivité et valeur fourragère. Les auteurs indiquent ensuite quelques associations "graminées-légumineuse s" susceptibles d'être utilisées pour les sols locau

    Experimental test of the Gallavotti-Cohen fluctuation theorem in turbulent flows

    Full text link
    We test the fluctuation theorem from measurements in turbulent flows. We study the time fluctuations of the force acting on an obstacle, and we consider two experimental situations: the case of a von K\'arm\'an swirling flow between counter-rotating disks (VK) and the case of a wind tunnel jet. We first study the symmetries implied by the Gallavotti-Cohen fluctuation theorem (FT) on the probability density distributions of the force fluctuations; we then test the Sinai scaling. We observe that in both experiments the symmetries implied by the FT are well verified, whereas the Sinai scaling is established, as expected, only for long times

    Small Scale Response and Modeling of Periodically Forced Turbulence

    Get PDF
    The response of the small scales of isotropic turbulence to periodic large scale forcing is studied using two-point closures. The frequency response of the turbulent kinetic energy and dissipation rate, and the phase shifts between production, energy and dissipation are determined as functions of Reynolds number. It is observed that the amplitude and phase of the dissipation exhibit nontrivial frequency and Reynolds number dependence that reveals a filtering effect of the energy cascade. Perturbation analysis is applied to understand this behavior which is shown to depend on distant interactions between widely separated scales of motion. Finally, the extent to which finite dimensional models (standard two-equation models and various generalizations) can reproduce the observed behavior is discussed

    Vortex tubes in velocity fields of laboratory isotropic turbulence: dependence on the Reynolds number

    Full text link
    The streamwise and transverse velocities are measured simultaneously in isotropic grid turbulence at relatively high Reynolds numbers, Re(lambda) = 110-330. Using a conditional averaging technique, we extract typical intermittency patterns, which are consistent with velocity profiles of a model for a vortex tube, i.e., Burgers vortex. The radii of the vortex tubes are several of the Kolmogorov length regardless of the Reynolds number. Using the distribution of an interval between successive enhancements of a small-scale velocity increment, we study the spatial distribution of vortex tubes. The vortex tubes tend to cluster together. This tendency is increasingly significant with the Reynolds number. Using statistics of velocity increments, we also study the energetical importance of vortex tubes as a function of the scale. The vortex tubes are important over the background flow at small scales especially below the Taylor microscale. At a fixed scale, the importance is increasingly significant with the Reynolds number.Comment: 8 pages, 3 PS files for 8 figures, to appear in Physical Review
    • …
    corecore