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Numerical simulations of the turbulent flow over the flat backed Ahmed model at Reynolds
number Re ' 4× 105 are conducted using a lattice Boltzmann solver to clarify the mean
topology of the static symmetry-breaking mode of the wake. It is shown that the recircu-
lation region is occupied by a skewed low pressure torus, whose part closest to the body
is responsible for an extra low pressure imprint on the base. Shedding of one-sided vortex
loops is also reported, indicating global quasi-periodic dynamics in conformity with the
seminal work of Grandemange et al. (J. Fluid Mech., vol 722, 2013, 51-84). Despite the
limited low frequency resolution of the simulation, power spectra of the lateral velocity
fluctuations at different locations corroborate the presence of this quasi-periodic mode
at a Strouhal number of St= 0.16± 0.03. A shallow base cavity of 5% of the body height
reduces the drag coefficient by 3% but keeps the recirculating torus and its interaction
with the base mostly unchanged. The drag reduction lies in a global constant positive
shift of the base pressure distribution. For a deep base cavity of 33% of the body height,
a drag reduction of 9.5% is obtained. It is accompanied by a large elongation of the recir-
culation inside the cavity that considerably attenuates the low pressure sources therein
together with a symmetrisation of the low pressure torus. The global quasi-periodic mode
is found to be inhibited by the cavity.

1. Introduction

It has been recently shown that turbulent wakes of three-dimensional bluff-bodies in a
uniform flow exhibit dominant stochastic long-time global dynamics due to the permanent
presence of intense symmetry-breaking modes. They have first been evidenced for the
flows over several complex geometries having a reflexional symmetry and a blunt base.
These include bluff-bodies with an axisymmetric base (Grandemange et al. 2012b) or with
a rectangular base being either a special configuration of the Ahmed body (Grandemange
et al. 2012a, 2013b,a; Volpe et al. 2015) or of the Windsor model (Perry et al. 2016).
Both the Ahmed and the Windsor models are simplified academic models devoted to the
study of ground vehicle aerodynamics. These bodies are tested in close proximity to a
wall to simulate the ground effect present for ground vehicles. The symmetry-breaking
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modes are stabilized when the distance to the wall (ground clearance) is reduced, leading
to a pitchfork bifurcation (Grandemange et al. 2013a). Cadot et al. (2015) measured the
critical value of the ground clearance which varies from 10% to 7% of the base height when
the Reynolds number is increased from 1.5×104 to 1.5×105. The permanent symmetry-
breaking modes have also been found later in the wake of even simpler geometries such
as the sphere and the disk (Grandemange 2013; Grandemange et al. 2014a), bullet shape
bodies (Rigas et al. 2014, 2015a,b; Gentile et al. 2016, 2017) and rectangular flat plates
(Cadot 2016).

Whatever the geometries, these modes are assumed to be reminiscent of the first steady
bifurcation leading to an asymmetric steady flow in the laminar regime as reported
numerically and/or experimentally for axisymmetric bodies (Thompson et al. 2001; Pier
2008; Fabre et al. 2008; Meliga et al. 2009; Bohorquez et al. 2011), the squareback Ahmed
body (Grandemange et al. 2012a; Evstafyeva et al. 2017) and rectangular flat plates
(Marquet & Larsson 2014).

Axisymmetric bluff-bodies are probably the most generic and studied cases, among
which is the sphere, for which the first symmetry-breaking leads to a steady planar
symmetry with a selection of a fixed azimuthal phase or wake orientation (Thompson
et al. 2001; Pier 2008). Turbulent scales appear in the wake for Re> 800 in addition to
the periodic dynamics of vortex loops shedding. The wake gradually loses its preference
toward the pre-selected azimuthal phase by the first steady bifurcation (Mittal et al. 2002)
and the axisymmetry of the flow is restored from Re ' 103. However, the symmetry-
breaking introduced by the first bifurcation still remains in terms of fluid forces, since
a non-null instantaneous side force persists permanently on the geometry (Mittal et al.
2002; Yun et al. 2006). As proposed by Rigas et al. (2015a), the large-scale dynamics of
the wake relies mainly on the stochastic azimuthal phase dynamics of the asymmetric
mode.

For non-axisymmetric bodies such as the Ahmed body or the rectangular plate, the
first steady bifurcation leads to only a few possible wake orientations imposed by the sym-
metry properties of the bodies (Grandemange et al. 2012a; Marquet & Larsson 2014).
In the turbulent regime, these few wake orientations are explored during the dynam-
ics, sometimes leading to multi-stable behaviors (Grandemange et al. 2013a) in cases of
competitions between the most probable wake orientations which, from that study, are
equivalent to either top/bottom (called z-instability), left/right (called y-instability) ori-
entated wakes. The selection of orientations depends on the ground clearance and the base
aspect ratio of the body. An important point of the parametric study of Grandemange
et al. (2013a) is that only the left/right orientations correspond to a proper symmetry-
breaking of the forcing geometry since the ground and the body supports break the
top/bottom reflectional symmetry of the main body.

Although these asymmetric modes are of major importance for the wake dynamics and
the fluid force exerted on the body, they have not been extensively studied because of
their fairly recent investigations. For instance, the few experimental characterizations of
the turbulent asymmetric modes of rectangular flat backed body (Grandemange et al.
2013b; Volpe et al. 2015; Perry et al. 2016) lead to some different speculative three
dimensional mean wake structure scenarios (Evrard et al. 2016; Perry et al. 2016) with
possible connections between the toroidal motion inside the recirculating bubble and
longitudinal vortices observed further downstream.

The passive flow control using a control cylinder (Grandemange et al. 2014b), a base
cavity (Evrard et al. 2016) or active flow control with flaps (Brackston et al. 2016),
pulsed jets (Li et al. 2016) are efficient strategies to suppress these modes resulting in a
symmetrized wake and base drag reduction. The most remarkable technique is the passive
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base cavity that can achieve about 18% base suction reduction (Evrard et al. 2016).
However, whatever the technique, the physical mechanism producing the symmetrisation
and the drag reduction are not yet well understood.

To our knowledge, there are even less numerical simulations in the literature investigat-
ing the asymmetric modes of the Ahmed body strictly speaking. With the exception of
the recent simulation of Evstafyeva et al. (2017) confirming the bifurcation scenario of the
laminar regime evidenced by Grandemange et al. (2012a), we are only aware of the com-
putation of Pasquetti & Peres (2015) who obtained the asymmetric mode in the turbulent
regime, and the work of Wassen et al. (2010) who incidentally triggered the asymmetric
modes using symmetric steady blowing. One may wonder why other previous numerical
simulations (Bayraktar et al. 2001; Krajnović & Davidson 2003; Rouméas et al. 2009;
Östh et al. 2014) or experimental works (Duell & George 1999; Barros et al. 2014) with
similar flat backed geometries never reported the presence of asymmetric modes. A pos-
sible explanation given by Li et al. (2016) is that the primary steady instability can also
select permanently either the top or bottom orientated wake (Grandemange et al. 2013a),
without any apparent symmetry-breaking because of the absence of a strictly speaking
top to bottom reflectional symmetry due to the presence of a horizontal ground. The
experiment of Li et al. (2016) that reports the left-right bistability is exactly the same
experiment as Barros et al. (2014) but with an additional small disturbance in the ground
clearance that is necessary to trigger the left and right symmetry-breaking modes. The
disturbance produces an effect that only rotates by an angle of ±π/2 the permanently
orientated top wake of the Barros et al. (2014) flow, thus leading to the bistable wake.
Similarly the flow control computation by Wassen et al. (2010) also provides indications
of the presence of a non trivial static symmetry-breaking mode associated with either
top or bottom wake orientation.

The purpose of the present numerical investigations is to get some information in the
wake that is not obtainable experimentally, in order to characterize the asymmetric mode
of a squareback Ahmed body as well as to better understand the mechanisms of sym-
metrisation and drag reduction induced by a base cavity as recently reported by Evrard
et al. (2016). This latter work associated the drag reduction with the wake symmetri-
sation. Despite the lack of velocity data in the cavity, it speculates that less interaction
between the body base and the recirculating flow may be a plausible explanation for the
drag reduction.

The geometry we consider is inspired from the work of Evrard et al. (2016). The ques-
tions we address are firstly, can our turbulence model capture the asymmetric mode and
the cavity effect? Secondly from the fully accessible data resulting from the computation
can we elucidate the drag reduction mechanism using a base cavity?

The paper is organized as follows. Section 2 describes the numerical framework and
setup for the simulations. Results in section 3 are split into five parts. Section 3.1 is a
brief presentation of the main characteristics of the reference flow with no cavity (the
baseline). Fluid forces and mean flow topologies produced by the different cavity depths
are exposed respectively in section 3.2 and section 3.3. The mean pressure field in the
recirculating flow is studied simultaneously with the mean velocity field in section 3.4,
then the developments of the mixing layer bounding the recirculating flow are investigated
in section 3.5. Results lead to four discussions, a first devoted to the comparison with
the experiment of Evrard et al. (2016) in section 4.1, a second about the turbulent
asymmetric global mode structure in section 4.2, a third about the drag reduction using
a base cavity in section 4.3 and a fourth about the wake symmetrisation in section 4.4.
Section 5 concludes and offers perspective to the paper.
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2. Numerical method and flow geometry

2.1. General framework of the lattice Boltzmann solver

The simulations presented in this paper have been performed using the lattice Boltz-
mann solver LaBS (2014). This solver has been developed within a consortium of indus-
trial companies (Renault, Airbus, CS), academic laboratories (UPMC, ENS Lyon) and
strong partnerships with others entities (Onera, Alstom, Paris Sud University, Gantha,
Matelys). The lattice Boltzmann method (LBM) considers the advection and collision of
fluid particles at the mesoscopic level. The method is briefly reviewed in the following.

In kinetic theory, the evolution of a monoatomic gas follows Boltzmann’s equation
(Cercignani 1988):

∂f

∂t
+ ci
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where the distribution function f(x, c, t) represents the number of fluid particles with
position x and velocity c at time t. The exterior forces are represented by F and are
neglected in the remaining of this paper. Macroscopic quantities such as density, velocity
and energy can be recovered by calculating the moments of the distribution function over
all possible velocities:
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The right-hand operator in (2.1) describes the collisions between fluid particles. The
so-called BGK operator (Bhatnagar et al. 1954) considers the effect of collisions as a
relaxation towards an equilibrium distribution function feq with a relaxation time τ .
Velocities can then be restricted to a discrete and finite set cα (He & Luo 1997). LaBS uses
the standard D3Q19 model with 19 discrete velocities. The discrete velocity Boltzmann
equation coupled to the BGK operator thus reads:

∂fα(x, t)

∂t
+ cα,i

∂fα(x, t)

∂xi
= −1

τ
(fα(x, t)− feqα (x, t)). (2.2)

The restricted set of velocities and the equilibrium distribution function are prescribed
so as to recover the Navier-Stokes equations up to a given order. Through the Chapman-
Enskog multi-scale expansion, with the Knudsen number as the expansion parameter
(Chen & Doolen 1998), the non-linear compressible Navier-Stokes equations can thus
be recovered from (2.2) under the assumption that the Mach number remains small
(M < 0.4). The fluid viscosity ν is related to the relaxation time τ through the relation
ν = c2s(τ −1/2), where cs denotes the speed of sound. Finally, the macroscopic quantities
can be recovered with finite sums over the discrete velocities. Equation (2.2) can be
integrated along the characteristic cα for a time interval ∆t. The integral of the collision
operator can be approximated using a trapezoidal rule with second order accuracy:

fα(x+ cα∆t, t+ ∆t)− fα(x, t) = −∆t

2τ
(fα(x+ cα∆t, t+ ∆t)− feqα (x+ cα∆t, t+ ∆t)

+ fα(x, t)− feqα (x, t)) +O(∆t3).

(2.3)
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Expressing gα = fα(x, t) + ∆t/2τ(fα(x, t)− feqα (x, t)) leads to the explicit relation:

gα(x+ cα∆t, t+ ∆t) =

(
1− ∆t

τg

)
gα(x, t) +

∆t

τg
geqα (x, t), (2.4)

with τg = τ + ∆t/2 and geqα = feqα . The numerical scheme (2.4) is solved on the nodes
of a grid of cubic elements of size ∆x = |cs|∆t. It can be viewed as a two-step algo-
rithm in which the fluid particles are first re-distributed through the collision step and
then transported to the neighboring lattice nodes during the streaming step. The local
computational nature of this explicit scheme allows for an efficient parallelization of the
solver.
Complex geometries are handled in LaBS through the use of an immersed solid bound-
ary method similar to the model described in Verschaeve & Müller (2010). The mesh is
generated by a parallel octree mesher, where the inside of meshed surfaces is excluded.
A hierarchical grid-refinement method (Filippova & Hänel 1998) allows for a finer mesh
close to the surfaces and in regions of interest.
Turbulence modelling in LaBS is achieved using an LES method. This is done either by
adding dissipation through high-order selective spatial filtering, called the Approximate
Deconvolution Model (Stolz et al. 2001; Ricot et al. 2009; Malaspinas & Sagaut 2011) or
by using a dedicated subgrid scale model, called the Shear Improved Smagorinsky Model
(Lévêque et al. 2007; Touil et al. 2014) as employed in this work. Both the ADM and the
SISM approach can be coupled with a wall-law model to describe near wall turbulence.
LaBS uses a wall law accounting for adverse pressure gradient (Afzal 1996), curvature
and roughness effects (Patel & Sotiropoulos 1997).

2.2. Numerical setup

The geometry and the Reynolds number are copied from the experiment of Evrard et al.
(2016) that is relevant to Ahmed bodies in the unstable regime, i.e. with a ground clear-
ance larger than the critical ground clearance (Grandemange et al. 2013a; Cadot et al.
2015). The body dimensions are W × H × L = 350 mm × 297 mm× 1124 mm with
a ground clearance of C = 30 mm. The original cylindrical supports are replaced by
NACA 0025 profiles with a chord of 80 mm. The extend of the computation domain is
44.8 m×13.6 m×7.15 m. The inlet velocity is set to U0 = 20 m s−1, leading to a Reynolds
number Re=U0H

ν ' 396000. The inflow is uniform without any turbulence injection. The
outlet pressure condition is fixed to p0 = 101 325 Pa. Multi-resolution domains are em-
ployed to refine the mesh in the vicinity of the walls using boxes and geometry offsets,
as can be seen in figure 1. The smallest mesh size employed is 1.5 mm, close to the
Ahmed body model, which led to a time step dt = 6.9282 × 10−6 s for the simulations.
We mention that while the setting is fully symmetric with respect to the reflectional
symmetry of the geometry, the generated mesh is not as can be seen in figure 1(a). To
correctly reproduce the boundary layer that impacts the Ahmed body that was used in
the experiments of Evrard et al. (2016), a non-slip condition is placed upstream of the
model. The length of this section has been determined beforehand by computing the flow
without the model. The boundary layer height is equal to 15 mm when the flow impacts
the model. The mesh is refined up to 3 mm on the non-slip region of the floor and in
the wake of the model. A total of 16 million nodes was used in the mesh. A refined mesh
was also considered, with a mesh size of 1 mm close to the body for a total of 40 million
nodes. The resulting drag coefficient was found to vary by 2.8% and the mesh was thus
considered converged.

The coordinate system Oxyz is defined in figure 1, its origin O is taken at the centre of
the body base. For the remainder of the paper, a∗ denotes the non-dimensional value of
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(a)

(b)

Figure 1. Mesh around the body, the non-slip floor and the wake. Cross section views at half
the body height (a) and width (b).

any quantity a(x, y, z, t) made dimensionless by a combination of the height H = 0.297 m
of the body and the inlet velocity U0 = 20 m.s−1. Time in non-dimensional units is
thus defined as t∗ = tU0/H. The effect of a base cavity of dimensions (W − 24 mm)×
(H − 24 mm) is studied in this paper. Two cavity depths d∗ = 0.047 and d∗ = 0.337 are
investigated that correspond to 4.7% and 33.7% of the body height H respectively.

Computations are performed over a total time T ∗ = 98 for the configurations with a
cavity and up to T ∗ = 793 for the longest run of the reference case. Integrated efforts over
the whole geometry are recorded over time and used to monitor the convergence of the
simulations. The flow is averaged from iteration 100 000 to allow for convergence. Simu-
lations were carried out on a cluster of Intel(R) Xeon(R) E5-2680 v2 cores, with 3.2 Gb
of RAM per core. The average computational time needed on 200 cores was 9 hours for
the simulations over T ∗ = 98, and up to 61 hours for the long run over T ∗ = 793.

In the following, the base pressure effect on the drag is quantified using the base suction
coefficient defined as Cb = −Cpb , where the base pressure coefficient Cpb =

∫
p−p0
1
2ρU

2
0
dS is

the base pressure averaged over the surface S = W ×H of the blunt base. The drag, side
force and lift coefficients are denoted Cx, Cy and Cz respectively and defined as :

Ci =
Fi

1
2ρSU

2
0

; i = x, y, z,

where Fi is the corresponding force component exerted of the body.

3. Results

3.1. Baseline

Global views of the flow around the Ahmed body are shown in figure 2 with no cavity.
They are obtained by averaging the flow over the duration of the run after convergence.
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1
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-1

Figure 2. Mean pressure coefficient Cp and streamlines around the Ahmed body; horizontal
plane z∗ = 0 in (a), and vertical plane y∗ = 0 in (b).

The color represents the pressure coefficient on which streamlines are superimposed for
the two basic planes, z∗ = 0 in figure 2(a) and y∗ = 0 in figure 2(b). These global views
indicate boundary layer separations and reattachments around the fore body where the
curvatures are large, producing recirculating bubbles symmetrically situated on both the
lateral sides in figure 2(a), and on the top of the body in figure 2(b). The flow acceleration
between the fore body and the ground that is associated with a favourable pressure
gradient prevents the flow to separate at the bottom. The fore body flow satisfactorily
respects the reflectional symmetry of the geometry with respect to the plane y∗ = 0 while
the wake clearly exhibits a breaking of this reflectional symmetry in figure 2(a). This is
the symmetry-breaking mode evidenced by Grandemange et al. (2013b).

3.2. Fluid force

The fluid force coefficients are displayed in table 1 for the three investigated cavity
depths. The base suction coefficient and the drag coefficient are significantly larger than
the values of Cb = 0.149 and Cx = 0.288 measured experimentally in Evrard et al. (2016)
for a similar flow condition. Despite the discrepancy, the base suction to drag ratio is
conserved, indicating that 52% of the drag is ascribed to the base drag as commonly
reported for this flow geometry. As for the experiment where Cz = −0.117, a negative lift
is computed but again with a larger magnitude. While the flow symmetry would suggest
a zero mean side force coefficient, a significant positive value of Cy = 0.016 is found.
This apparent contradiction is due to the presence of a static symmetry-breaking mode
evidenced in figure 2(a). The cavity has the effect to reduce the base drag, and hence the
drag. The drag reductions of 2.97% for the shallow cavity d∗ = 0.047 and 9.46% for the
deep cavity d∗ = 0.337 are in very good agreements with the experimental observations
of Evrard et al. (2016). As for the experiment, the negative lift coefficient is not affected
by the presence of the cavity, indicating that the lift is dominated by a global larger
velocity along the bottom side than the top side of the body. The numerical simulation
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d∗ Cb Cx Cy Cz ∆Cb/Cb ∆Cx/Cx

0 0.188 0.356 0.016 −0.139 ... ...
0.047 0.166 0.345 0.015 −0.133 −11.7% −2.97%
0.337 0.139 0.322 0.007 −0.142 −26.1% −9.46%

Table 1. Global properties of the flow; base suction coefficient Cb, force coefficients Ci for
d∗ = 0 (no cavity) and the two cavity depths d∗ = 0.047 and d∗ = 0.337.

then recovers the main characteristic of the cavity effect, with similar magnitudes in
relative comparison to the case with no cavity. However the experimental discrepancy
deserves comments that are discussed in section 4.1. Next, we investigate the flow data
for the three cases; no cavity, shallow and deep cavity to get a better insight into the
flow modifications.

3.3. Mean flow topology

Figure 3 shows the iso-surface of the mean pressure coefficient at a value Cp = −0.320
for the baseline and the shallow cavity, and at a larger value of Cp = −0.270 for the
deep cavity. This visualization allows to identify the mean low pressure structure which
has been reported to have a torus shape in previous numerical simulations (Krajnović
& Davidson 2003; Rouméas et al. 2009). In the present simulation, the torus is clearly
observable but its shape does not respect the reflectional symmetry of the geometry for
the baseline and the shallow cavity as shown in figures 3(a, b). For these two simulations
the turbulent wake is permanently locked on a static symmetry-breaking mode, while in
experiments that are not limited in the duration of observation, the dynamics explore the
two static mirror modes (Grandemange et al. 2013b). Actually, the longer run (d∗ = 0)
with a total time duration of T ∗ = 793 was not long enough to observe a switch which
is not surprising due to the long-time dynamics associated with the random switches.
For instance, in the experiment of Evrard et al. (2016), only 8 switches were observed
during an observation of T ∗ = 4000. When the deep cavity is present, the reflectional
symmetry of the torus is restored exactly as found experimentally in Evrard et al. (2016).
The symmetrisation is also clearly observable in the far wake, at x∗ = 4.5 downstream of
the body base as shown in figure 4. The clockwise motion observed in both figures 4(a,b)
is the consequence of the symmetry-breaking, associated with a large positive side force
coefficient (see table 1) while a symmetric far wake is present in figure 4(c) for the deep
cavity associated with a reduced side force coefficient.

The mean recirculating bubble topology is better quantified in figure 5 by looking at
the streamlines in the two planes y∗ = 0 and z∗ = 0, corresponding to two perpendicular
cuts of the low pressure torus evidenced previously in figure 3. The low pressure torus is
evidently induced by a toroidal recirculating motion. Observations are very similar in the
plane z∗ = 0 either without the cavity (figure 5a) or with the shallow cavity (figure 5b).
On the other hand, in the plane y∗ = 0, the shallow cavity in figure 5(e) is associated with
a more horizontal back flow than without the cavity (figure 5d) improving the top/bottom
symmetry of the bubble. For both the baseline and the shallow cavity, the recirculation
the closest to the base, observed in figure 5(a, b) at the right edge (y∗ > 0) is quite circular
and will be referred to as the circular recirculation. All the other recirculations located
at the left (y∗ < 0), top (z∗ > 0) and bottom (z∗ < 0) edge are much further apart from
the base and present elliptical shapes. When the cavity is deepened in figure 5(c, f), the
remarkable modification summarised in figure 6 is that the circular recirculation close
to the right edge whose centre is located by the red cross (no cavity) or the blue circle
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(a) (b) (c)

Figure 3. Iso-surface of the mean pressure coefficient Cp = −0.320 for d∗ = 0 (a) and
d∗ = 0.047 (b), and Cp = −0.270 for d∗ = 0.337 (c). Only the iso-surface in the near-wake is

shown.

U*(b)
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1
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Figure 4. Mean velocity field in the plane x∗ = 4.5 ; for d∗ = 0 (a), d∗ = 0.047 (b) and
d∗ = 0.337 (c). The color represents the mean streamwise velocity U , while the continuous lines
are the streamlines computed from both the mean transversal components V and W .

(shallow cavity), is replaced by an elliptical recirculation whose centre is located by a
black square similarly to the recirculations observed at the three other edges. Although
the curve limiting the recirculating bubble shown in figure 6 changes shape as the cavity
is produced, its size is only significantly lengthened in the plane y∗ = 0 by a small amount
of 4.4% in figure 6(b) for the deepest cavity compared to that of the other cases.

3.4. Mean pressure and velocity fields

As the drag reduction induced by the cavity is directly related to an increase of the
base pressure (table 1), we now investigate the mean pressure distribution at the base
of the body. These distributions are shown for the three cases in figure 7(a,b,c). For
d∗ = 0 and d∗ = 0.047 (figures 7a,b), the low pressure area on the right hand side of the
base (y∗ > 0) is facing the circular part of the toroidal recirculation denoted by the red
symbols in both figures 5(a,b). The pressure distribution at the base of the deep cavity in
figure 7(c) respects satisfactorily the symmetry of the geometry. The simulation reports
the same observation as in Evrard et al. (2016), the low pressure region disappears leading
to pressure levels comparable to the highest pressure levels of the baseline in figure 7(a).
This is even better quantified in figure 7(d) by plotting the mean pressure coefficient
at the base along the horizontal line z∗ = 0. A more subtle effect can be observed
with the shallow cavity case. Actually, it displays almost the same pressure variations
as for the baseline except that the distribution in figure 7(b) is slightly shifted towards
larger values of pressure coefficients. This global pressure increment that can be seen in
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Figure 5. Streamlines of the mean flow in the plane z∗ = 0 (a,b,c) and in the plane y∗ = 0
(d,e,f) ; for d∗ = 0 (a,d), d∗ = 0.047 (b,e) and d∗ = 0.337 (c,f). The limit of the recirculating
bubble is represented by dashed curve, symbols locate centres of recirculations.
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Figure 6. Limit of the recirculating bubble (dashed lines) and locations of recirculation centres
with identical symbols as in figure 5, in the plane z∗ = 0 (a) and in the plane y∗ = 0 (b) for
d∗ = 0 (red cross symbols), d∗ = 0.047 (blue circle symbols) and d∗ = 0.337 (black square
symbols).
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figures 7(d) is very close to the base suction difference of 0.022 observed between the two
configurations in table 1, thus suggesting that the drag reduction is solely attributed to
this global increment.

The modification of the pressure distribution downstream the base can be seen in
the set of figure 8. To better quantify the flow facing the low pressure imprint on the
body base, the pressure distribution along a line y∗ = constant that passes through the
centre of the circular recirculation is then displayed in figure 8(d). Both distributions, for
the baseline and shallow cavity, indicate an almost identical pressure field for x∗ > 0.5,
while they are horizontally and vertically shifted from each other for x∗ < 0.5. They both
present a local minimum, with a well shape indicating the presence of a viscous vortex flow
(i.e. the circular recirculation)-source of a low pressure. The horizontal shift appears to
be introduced by the cavity depth of d∗ = 0.047, indicating that the centre of the circular
recirculation remains at the same distance from the base of the body. The vertical shift
is introduced in the region 0.33 < x∗ < 0.5 where the pressure gradient with the cavity
is reduced compared to that of the baseline. The corresponding mean vertical velocity
component V ∗ along the same horizontal lines are displayed in figure 8(e). Again a clear
horizontal shift corresponding to the cavity depth is observable between the baseline
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and the shallow cavity. The interaction of the viscous vortex with the base leads to the
same maximum of velocity close to the base and the velocity gradients are very similar
for x∗ < 0.33. The mechanism suggested by Evrard et al. (2016) based on a weakened
interaction of the circular recirculation with the body base is not observed for the shallow
cavity. Instead, the present study shows for the shallow cavity that the mean flow has
not changed in the vicinity of the base due to an effect of translation of the toroidal
recirculation inside the cavity over a distance corresponding to the cavity depth. With
the deep cavity, the back flow enters the cavity up to the body base resulting in hugely
elongated recirculations (figures 5c,f) which considerably reduces the velocity gradients
around the recirculation centre at x∗ ' 0.66 in figure 8(e) as well as the maximum
velocity at the base proximity.

So far, the effect of the cavity has been studied inside the recirculating region, we now
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turn to the external boundaries of the recirculation, by focusing on the development of
the vortex layers initiated by the separation at the periphery of the body base.

3.5. Mixing layers, velocity fluctuations and vortex dynamics

We are interested in the development of the vortex layers created on the body prior
detachments. The vorticity vectors contained in these layers are mainly perpendicular to
the main flow and parallel to the wall from which the vortex layer detaches.

The mean development of this spanwise vorticity component is shown in figure 9 in the
two planes z∗ = 0 and y∗ = 0. No significant differences in the development of the mixing
layer are detectable between the shallow cavity (figures 9a,d) and no cavity (figures 9b,e).
Both present a uniform negative vorticity distribution inside the recirculation region in
figure 9(a) and figure 9(b) due to the viscous vortex associated with the symmetry-
breaking as described in the previous section.

For the deep cavity in figures 9(c,f), the observed vorticity distribution confirms the
symmetrisation inside the recirculation with the disappearance of the viscous vortex.
We can notice small but significant modifications in the mixing layer developments. In
figure 9(c), the spreading rate of the right side mixing layer (y∗ > 0) is larger than without
the cavity while for the left side mixing layer (y∗ < 0) it is smaller, in consistency with
the wake symmetrisation. For the mixing layers of the top and bottom sides shown in
figure 9(f), it appears that only the top side mixing layers is affected with a smaller
spreading rate than without a cavity.

The fact that the facing mixing layer (y > 0) has comparatively almost no fluctuations
can be explained by the work of Liou (1994) on the stability analysis of curved mixing
layers. According to this study, a stabilization mechanism due to the large curvature
imposed by the circular recirculation might be implied.

We show the statistics of the longitudinal component of the velocity fluctuations,
defined from the classical Reynolds decomposition. With no cavity, the fluctuations in
figure 10(a) are mainly concentrated in only one mixing layer, on the left side(y∗ < 0).
The fact that the facing mixing layer (y∗ > 0) has comparitively almost no fluctuations
can be explained by the work of Liou (1994) on the stability analysis of curved mixing
layers. According to this study, a stabilization mechanism due to the large curvature
imposed by the circular recirculation might be implied. These large asymmetry in the
fluctuations was previously reported in the experimental work of Grandemange et al.
(2013b) as well as in the simulation of Pasquetti & Peres (2015). They were assumed in
Grandemange et al. (2013b) from hot wire measurements to be at the origin of the vortex
shedding loops with a corresponding Strouhal number of order 0.2 (or equivalently 13.5 Hz
for the present work). Velocity time series have been recorded at a few different locations
in the wake during 1.5 s with a sampling frequency of 144 kHz. The small recording
duration gives a resolution of δf = 2.2 Hz which seems barely enough to identify the
periodic mode in the power spectra. The spectra are shown for the lateral component w of
the velocity for three locations A, B and C in order to probe respectively the left, top and
bottom mixing layer. These locations are displayed with cross symbols in figures 10(a,b).
Despite the poor frequency resolution of the spectra presented in figure 11(a,b), a periodic
mode could be present in the range St = 0.16±0.03 with no cavity and at both locations
A and B. As can be directly seen at these locations, the cavity effect corresponds to a
high pass filtering, attenuating this mode. Concerning the bottom mixing layer probed
at the C location in figure 11(c), it is found that the power spectrum is not sensitive to
the cavity depth.

The instantaneous snapshot of the wake in figure 12(a) confirms the presence of vortex
loops (indicated by arrows). These loops appear formed and shed from the side of large
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Figure 9. Mixing layer developments visualized with the y−component of the vorticity in the
plane z∗ = 0 (a,b,c) and with the z−component of the vorticity in the plane y∗ = 0 (d,e,f) ; for
d∗ = 0 (a,d), d∗ = 0.047 (b,e) and d∗ = 0.337 (c,f).

velocity fluctuations evidenced in figure 10(a). The shallow cavity produces an attenu-
ation of these fluctuations by about 12% in figure 10(b) while the deep cavity reduces
them drastically by about 40% in figure 10(c) together with a slight increase of the fluc-
tuations of the opposite mixing layer. As a result, the velocity fluctuation statistics are
symmetrised in a manner consistent with the mean flow either displayed as mean stream-
lines, mean vorticity or mean pressure earlier in the paper. An identical snapshot to that
shown in figure 12(a) but with the deep cavity (figure 12c) does not show vortex loops
anymore, suggesting a suppression of the antisymmetric quasi-periodic fluctuations in
accordance with the high pass filtering effect shown by the velocity spectra in figure 11.

The reduction of the fluctuations observed in the perpendicular plane in figures 10(d,e,f)
can also be ascribed to this low frequency filtering associated with a reduction of the
shedding activity as the cavity depth is increased. However, the bottom mixing layer
(corresponding to z∗ < 0) keeps an almost constant level of fluctuations with a veloc-
ity spectrum insensitive to the presence of the cavity, and no indication of the mode at
St = 0.16 (figure 11c). The acceleration in the underbody flow due to the floor prox-
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Figure 10. Mean turbulent kinetic energy distribution of the recirculating bubble in the plane
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imity intensifies local shear instabilities after separation that are likely dominating the
dynamics of the bottom mixing layer.

4. Discussions

4.1. Numerical simulation versus experiment

The numerical simulation is designed to reproduce the experimental geometry of Evrard
et al. (2016) with an identical flow Reynolds number. Some unexpected discrepancies are
observed and need comments. Actually, base suction and force coefficients in table 1 are
about 20% larger than those measured in the experiment. To refine the comparison, it
is necessary to compare the conditional average on one mirror mode only obtained by
Evrard et al. (2016) to the computed wake that is permanently locked on one mode. Doing
so, we estimated a correction of 1% maximum for the base suction, thus the switching
dynamics is not the cause for the discrepancy. On the other hand, the simulation gives an
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Figure 11. Loglog plot of the power spectrum of the vertical velocity component w located at
A (a), B (b) and C (c) in figure 10 for the 3 cavity depths.

accurate estimation of the Reynolds stress magnitude < u′2 > in the left and right mixing
layer as shown in figure 13(a). Nevertheless, fluctuations inside the recirculating region
around x∗ = 0.4 displayed in figure 13(b) are underestimated by the computation, and to a
greater instance for the deeper cavity case. This lower fluctuating near-wake might explain
the difference in the mean base pressure distribution, which for the deep cavity case has
a well defined high pressure region at the base centre (figure 7c) while no organization is
observable in the experimental distribution of Evrard et al. (2016). Another noticeable
difference in the flow is the recirculating bubble length that, estimated from streamlines
in the plane y = 0, measures Ln/D = 1.34 ± 0.03 in the present computation against
the experimental value of Le/D = 1.49 ± 0.03. The bubble length reduction increases
flow curvatures around the separation that is consistent with larger base suction and
force coefficients. We have no definitive explanation yet to explain the discrepancies and
can only evade the issue evoking the accuracy of the turbulence model to reproduce the
smooth separation and reattachment around the fore-body for which no experimental
data is available. Indeed, the position of the primary detachment at the leading edge and
the boundary layer properties after the turbulent reattachment on the lateral sides of
the body might control a large part of the fore-body drag as well as the after-body flow
properties. This interesting issue deserves to be investigated in the future.
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4.2. symmetry-breaking mode structure

An asymmetric turbulent mode of the Ahmed body is found in this numerical work using
an LES modelling at Re' 4 × 105. It is in conformity to those obtained by conditional
averaging in the experiments of Grandemange et al. (2013b); Volpe et al. (2015); Evrard
et al. (2016); Perry et al. (2016); Brackston et al. (2016); Li et al. (2016) and in the
numerical simulation of Pasquetti & Peres (2015). For all of these cases, the reflectional
symmetry of the geometry is broken for durations much longer than the natural convec-
tive time of the flow.

One of the main characteristics of the asymmetric mode is the deformed shape of the
recirculation torus evidenced using an iso-surface of pressure in figure 3(a). Its existence
then excludes the possibility of a mean vortex structure connecting the interior of the
recirculation and its exterior, with a part close to the base, and an open part correspond-
ing to longitudinal vortices in the wake, as speculated by Evrard et al. (2016) or Perry
et al. (2016) from partial velocity fields measurements in the wake.

The deformed torus in figure 3(a) gives insight into the origin of the base pressure
distributions obtained in the experiments, the part that is the closest to the body is
responsible for the region of the lowest pressure at the base (figure 7a), while the feedback
flow inside the recirculating bubble directed toward the body (figure 5a) is responsible
for the high pressure part of the base (figure 7a).

The most steady part of the torus is that which is the closest to the base since the
fluctuations therein have the lowest level (figures 10a,d). It is quite comparable to a solid
rotation (viscous eddy) since the streamlines are circular (figure 5a) and the vorticity
constant (figure 9a). However the lowest pressure is not obtained in this coherent part
(figure 8), but in the opposite part having an elliptical recirculation shape (figure 5a).

The structure in figure 3(a) is very similar to what is observed for the axisymmetric
body after the first steady bifurcation (Bury & Jardin 2014) and is also consistent with
the laminar transition investigation of the Ahmed body by Grandemange et al. (2012a)
suggesting that the turbulent asymmetric mode originates from the primary steady bi-
furcation of the flow.

In the near-wake, unsteadiness is localized in all mixing layers around the body base
and delimiting the recirculating region, but with a strong attenuation in the one at prox-
imity to the solid rotation (figures 9a,b). The instantaneous flow structure visualization
in figure 12(a) reveals the presence of Kelvin-Helmholtz type instabilities as well as one
sided vortex shedding loops consistent with the quasi-periodic fluctuations observed at
a Strouhal number around 0.2 by Grandemange et al. (2013b); Volpe et al. (2015). This
quasi-periodic dynamics is reminiscent of the second unsteady and periodic bifurcation
evidenced by Grandemange et al. (2012a). The present numerical characterization is in
total agreement with the speculative drawing of Grandemange et al. (2013b) aiming at
describing the turbulent global modes of the Ahmed body.

4.3. On the drag reduction induced by a base cavity

A small cavity of only 4.7% of the body height is able to reduce the base suction by
11.7% with a consequence of 2.97% in drag reduction while only little changes in the
wake properties are observed. We will first discuss this case.

With the shallow cavity, the circular part of the toroidal recirculation remains un-
changed, with similar velocity gradient around its centre (figure 8e) and with an identi-
cal distance apart from the body. The only noticeable difference is consequently that the
torus has entered inside the cavity on a distance equal to the cavity depth. On the other
hand, if we assume that the boundaries of the recirculating bubble (figure 6) are not
affected, which seems to be the case, then the recirculation sizes have increased, mainly
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by being elongated by entering the cavity. This effect is global if most of the torus pen-
etrates inside the cavity which might be the reason why the base pressure distribution
with the small cavity is simply uniformly increased relative to that of the base pressure
distribution with no cavity (figures 7a,b).

With the deep cavity, the toroidal recirculation has completely filled the space offered
by the base cavity, resulting in wide elliptical recirculations (figures 5c,f). Meanwhile the
local pressure minima are strongly attenuated (figure 8c), indicating that the role of the
recirculations to act as sources of low pressure is considerably reduced. In addition, the
large distance between the centres of the recirculation and the body base is beneficial for
a low base suction because in this region the pressure rises almost linearly as indicated
in figure 8(d).

In conclusion, the base suction reduction produced by a deep base cavity is intimately
related to the low pressure sources created by the toroidal recirculation. A first effect
of the cavity is to modify the geometrical properties of the recirculation by a significant
enlargement because, (i) the back flow enters the cavity, and (ii) the recirculating bubble
closure is slightly shifted further downstream. It results in a significant elongation of the
recirculating flow resulting in a weakening of the flow curvature associated with a pressure
increase. A second effect is the symmetrisation of the toroidal recirculation indicating that
the static asymmetric mode becomes unstable with a deep cavity. While the asymmetry
might create additional drag compared to that of a symmetric wake, its suppression using
a cavity is not the cause for the large drag reduction.

4.4. On the stabilization toward a symmetric turbulent wake with a deep base cavity

The numerical simulation reproduces the effect of symmetrisation of the turbulent wake
observed experimentally in Evrard et al. (2016) with a deep base cavity. This robust
result might give some indications about the instability origin for the static asymmetric
mode of the wake. The presence of a base cavity does not affect the separation loca-
tions nor the vortex sheets after separation. For two-dimensional bluff-body flows, it is
known that base cavities (Kruiswyk & Dutton 1990; Molezzi & Dutton 1995; Martin-
Alcantara et al. 2014) are not associated with a strong alteration of the global Bénard
von Kármán global dynamics. This specific wake feature is actually fully governed by the
vortex sheets interaction (Gerrard 1966) which is poorly sensitive to the presence of the
body itself (Abernathy & Kronauer 1962) and then also to an eventual base cavity. It
appears that the three-dimensional bluff-body flow behaves very differently because the
static symmetry-breaking mode is suppressed with the deep cavity. This suggests that
the vortex sheets produced by separations might not be the only origin of the instabil-
ity but also the toroidal recirculation whose characteristics are very sensitive to a base
manipulation.

5. Conclusions

The computation of the flow of the flat backed Ahmed body at Re' 396000 using an
LES method confirms the presence of static asymmetric modes in the turbulent wake.
Switching between the two mirror asymmetric modes as reported by experiments are not
observed during the finite time of the simulation. The lack of switching can be simply
explained by a too short simulation duration unless a non trivial triggering effect induced
by the experimental imperfections is implied as discussed by Sanmiguel-Rojas & Mullin
(2012). The permanent lock-in on one of these mode allows a full characterization. The
static turbulent global mode exhibits in the near-wake a toroidal recirculation associated
with a skewed low pressure torus. The global dynamics of one sided vortex shedding loops
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is also observed. The base cavity effect obtained experimentally is satisfactorily retrieved
and the drag reduction mechanism interpreted by the attenuation of the low pressure
sources inside the toroidal recirculation. The stabilization of the static asymmetric wake
with a deep cavity suggests higher sensitivity of this mode to disturbances inside the
recirculating bubble than in the outer vortex layers coming from the separations at the
base periphery. This last result should be tested to improve the efficiency of actuator
design targeting a symmetric wake for the squareback Ahmed body (Brackston et al.
2016; Li et al. 2016; Evstafyeva et al. 2017).
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Rouméas, M., Gilliéron, P. & Kourta, A. 2009 Analysis and control of the near-wake flow
over a squareback geometry. Computers & Fluids 38 (1), 60–70.

Sanmiguel-Rojas, E. & Mullin, T. 2012 Finite-amplitude solutions in the flow through a
sudden expansion in a circular pipe. Journal of Fluid Mechanics 691, 201–213.

Stolz, S., Adams, N. A. & Kleiser, L. 2001 An approximate deconvolution model for large-
eddy simulation with application to incompressible wall-bounded flows. Physics of Fluids
13 (4), 997–1015.

Thompson, M.C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere
wake transition. Journal of Fluids and Structures 15 (3-4), 575–585.
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