30 research outputs found

    Anion and cation emission from water molecules after collisions with 6.6-keV 16 O+ ions

    Get PDF
    DOI: https://doi.org/10.1103/PhysRevA.100.032713arXiv link: http://arxiv.org/abs/1910.00657International audienceAnion and cation emission following water dissociation was studied for 6.6-keV 16^{16}O+^{+} + H2_{2}O collisions. Absolute cross sections for the emission of all positively and negatively charged fragments, differential in both energy and observation angle, were measured. The fragments formed in hard, binary collisions appearing in peaks were distinguishable from those created in soft collisions with many-body dynamics that result in a broad energy spectrum. A striking feature is that anions and cations are emitted with similar energy and angular distributions, with a nearly constant ratio of about 1:100 for H^{-} to H+^{+}. Model calculations were performed at different levels of complexity. Four-body scattering simulations reproduce the measured fragment distributions if adequate kinetic-energy release of the target is taken into account. Providing even further insight into the underlying processes, predictions of a thermodynamic model indicate that transfer ionization at small impact parameters is the dominant mechanism for H+^{+} creation. The present findings confirm our earlier observation that in molecular fragmentation induced by slow, singly charged ions, the charge states of the emitted hydrogen fragments follow a simple statistical distribution independent of the way they are formed

    Fragmentation processes of ionized 5-fluorouracil in the gas phase and within clusters

    Get PDF
    We have measured mass spectra for positive ions produced from neutral 5-fluorouracil by electron impact at energies from 0 to 100 eV. Fragment ion appearance energies of this (radio-)chemotherapy agent have been determined for the first time and we have identified several new fragment ions of low abundance. The main fragmentations are similar to uracil, involving HNCO loss and subsequent HCN loss, CO loss, or FCCO loss. The features adjacent to these prominent peaks in the mass spectra are attributed to tautomerization preceding the fragmentation and/or the loss of one or two additional hydrogen atoms. A few fragmentions are distinct for 5-fluorouracil compared to uracil, most notably the production of the reactive moiety CF+. Finally, multiphoton ionization mass spectra are compared for 5-fluorouracil from a laser thermal desorption source and from a supersonic expansion source. The detection of a new fragment ion at 114 u in the supersonic expansion experiments provides the first evidence for a clustering effect on the radiation response of 5-fluorouracil. By analogy with previous experiments and calculations on protonated uracil, this is assigned to NH3 loss from protonated 5-fluorouracil

    Multi-photon and electron impact ionisation studies of reactivity in adenine–water clusters

    Get PDF
    Multi-photon ionisation (MPI) and electron impact ionisation (EII) mass spectrometry experiments have been carried out to probe unimolecular and intermolecular reactivities in hydrated adenine clusters. The effects of clustering with water on fragment ion production from adenine have been studied for the first time. While the observation of NH4+ fragments indicated the dissociation of protonated adenine, the dominant hydration effects were enhanced C4H4N4+ production and the suppression of dissociative ionisation pathways with high activation energies. These observations can be attributed to energy removal from the excited adenine radical cation via cluster dissociation. Comparisons of MPI and EII measurements provided the first experimental evidence supporting hypoxanthine formation in adenine–water clusters via theoretically predicted barrierless deamination reactions in closed shell complexes

    Direct observation of charge, energy and H transfer between backbone and nucleobases in isolated DNA oligonucleotides

    Get PDF
    Understanding how charge and energy as well as protons and hydrogen atoms are transferred in molecular systems as a result of an electronic excitation is fundamental for understanding the interaction between ionizing radiation and biological matter on the molecular level. In order to localize the excitation at the atomic scale, we have chosen to target phosphorus atoms in the backbone of gas-phase oligonucleotide anions and cations, by means of resonant photoabsorption at the L- and K-edges. The ionic photoproducts of the excitation process were studied by a combination of mass spectrometry and X-ray spectroscopy. The combination of absorption site selectivity and photoproduct sensitivity allowed the identification of X-ray spectral signatures of specific processes. Moreover, charge and/or energy as well as H transfer from the backbone to nucleobases has been directly observed. While the probability of one vs. two H transfer following valence ionization depends on the nucleobase, ionization of sugar or phosphate groups at the carbon K-edge or the phosphorus L-edge mainly leads to single H transfer to protonated adenine. Moreover, our results indicate a surprising proton transfer process to specifically form protonated guanine after excitation or ionization of P 2p electrons

    Ion interactions with pure and mixed water clusters

    No full text
    International audienceWe report on collisions of highly charged Xe20+ ions with weakly bound clusters of water molecules and water/adenine mixtures. Singly and doubly charged water clusters are observed in the size range of n=1 to 65 and n=49 to 61, respectively. In contrast to other comparable systems, the dominant monomer fragment (H3O+) is formed with very low kinetic energy, hence indicating that it is formed by evaporation processes. Larger fragments are produced with larger kinetic energies due to charge-separating processes. Furthermore, water clusters are found to be protonated, only a very small amount of the non protonated dimer (H2O)(2)(+) is observed. Excited mixed adenine/water clusters fragment by the loss of the surrounding water molecules, thus, adenine fragments are formed without water molecules attached. In addition, the adenine monomer is found to be partly protonated
    corecore