15,725 research outputs found

    Orbital debris environment for spacecraft designed to operate in low Earth orbit

    Get PDF
    The orbital debris environment model is intended to be used by the spacecraft community for the design and operation of spacecraft in low Earth orbit. This environment, when combined with material-dependent impact tests and spacecraft failure analysis, is intended to be used to evaluate spacecraft vulnerability, reliability, and shielding requirements. The environment represents a compromise between existing data to measure the environment, modeling of this data to predict the future environment, the uncertainty in both measurements and modeling, and the need to describe the environment so that various options concerning spacecraft design and operations can be easily evaluated

    Mapping the spin-dependent electron reflectivity of Fe and Co ferromagnetic thin films

    Full text link
    Spin Polarized Low Energy Electron Microscopy is used as a spin dependent spectroscopic probe to study the spin dependent specular reflection of a polarized electron beam from two different magnetic thin film systems: Fe/W(110) and Co/W(110). The reflectivity and spin-dependent exchange-scattering asymmetry are studied as a function of electron kinetic energy and film thickness, as well as the time dependence. The largest value of the figure of merit for spin polarimetry is observed for a 5 monolayer thick film of Co/W(110) at an electron kinetic energy of 2eV. This value is 2 orders of magnitude higher than previously obtained with state of the art Mini-Mott polarimeter. We discuss implications of our results for the development of an electron-spin-polarimeter using the exchange-interaction at low energy.Comment: 5 pages, 4 figure

    A Taxonomy Framework for Maritime Cybersecurity: A Demonstration Using the Automatic Identification System

    Get PDF
    The maritime transportation system is increasingly a target of cyber attacks. This paper describes a taxonomy that supports the creation of adversarial cyber models, risk mitigation, and resiliency plans as applied to the maritime industry, using the Automatic Identification System as a specific illustration of the approach. This method has already been applied to the aviation sector; retooling it for a maritime example demonstrates its broad applicability to the transportation sector, in general

    A Taxonomy Framework for Maritime Cybersecurity: A Demonstration Using the Automatic Identification System

    Get PDF
    The maritime transportation system is increasingly a target of cyber attacks. This paper describes a taxonomy that supports the creation of adversarial cyber models, risk mitigation, and resiliency plans as applied to the maritime industry, using the Automatic Identification System as a specific illustration of the approach. This method has already been applied to the aviation sector; retooling it for a maritime example demonstrates its broad applicability to the transportation sector, in general

    Probing protoplanetary disks with silicate emission: Where is the silicate emission zone?

    Get PDF
    Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with the spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 ΞΌm silicate feature peak-to-continuum and 11.3 to 9.8 ΞΌm flux ratios, is inversely proportional to log Lsstarf. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R10, of the 10 ΞΌm silicate emission zone in the disk goes as (L*/Lβ˜‰)^0.56, with slight variations depending on disk geometry (flaring angle and inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a dependence of grain size on luminosity. Combined with the fact that R10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminosity sources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T > 800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands

    Two-finger selection theory in the Saffman-Taylor problem

    Get PDF
    We find that solvability theory selects a set of stationary solutions of the Saffman-Taylor problem with coexistence of two \it unequal \rm fingers advancing with the same velocity but with different relative widths Ξ»1\lambda_1 and Ξ»2\lambda_2 and different tip positions. For vanishingly small dimensionless surface tension d0d_0, an infinite discrete set of values of the total filling fraction Ξ»=Ξ»1+Ξ»2\lambda = \lambda_1 + \lambda_2 and of the relative individual finger width p=Ξ»1/Ξ»2p=\lambda_1/\lambda_2 are selected out of a two-parameter continuous degeneracy. They scale as Ξ»βˆ’1/2∼d02/3\lambda-1/2 \sim d_0^{2/3} and ∣pβˆ’1/2∣∼d01/3|p-1/2| \sim d_0^{1/3}. The selected values of Ξ»\lambda differ from those of the single finger case. Explicit approximate expressions for both spectra are given.Comment: 4 pages, 3 figure

    C2D Spitzer-IRS spectra of disks around T Tauri stars: IV. Crystalline silicates

    Get PDF
    Aims. Dust grains in the planet-forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation, and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks for a statistically significant number of TTauri stars (96). Methods. As part of the cores to disks (c2d) legacy program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars, over a spectral range of 5-35 ΞΌm where many silicate amorphous and crystalline solid-state features are present. At these wavelengths, observations probe the upper layers of accretion disks up to distances of a dozen AU from the central object. Results. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. The Fe-rich crystalline silicates are largely absent in the c2d IRS spectra. The strength and detection frequency of the crystalline features seen at Ξ» > 20 ΞΌm correlate with each other, while they are largely uncorrelated with the observational properties of the amorphous silicate 10 ΞΌm feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (≀1 AU) emitting at ~ 10 ΞΌm and a much colder region emitting at Ξ» > 20 ΞΌm (≀10 AU). We identify a crystallinity paradox, as the long-wavelength (Ξ» > 20 m) crystalline silicate features are detected 3.5 times more frequently (~55% vs. ~15%) than the crystalline features arising from much warmer disk regions (Ξ» ~ 10 ΞΌm). This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The analysis of the shape and strength of both the amorphous 10 ΞΌm feature and the crystalline feature around 23 ΞΌm provides evidence for the prevalence of ΞΌm-sized (amorphous and crystalline) grains in upper layers of disks. Conclusions. The abundant crystalline silicates found far from their presumed formation regions suggest efficient outward radial transport mechanisms in the disks around TTauri stars. The presence of ΞΌm-sized grains in disk atmospheres, despite the short timescales for settling to the midplane, suggests efficient (turbulent) vertical diffusion, probably accompanied by grain-grain fragmentation to balance the expected efficient growth. In this scenario, the depletion of submicron-sized grains in the upper layers of the disks points toward removal mechanisms such as stellar winds or radiation pressure

    Anti-melanocortin-4 receptor autoantibodies in obesity

    Get PDF
    Background: The melanocortin-4 receptor (MC4R) is part of an important pathway regulating energy balance. Here we report the existence of autoantibodies (autoAbs) against the MC4R in sera of obese patients. Methods: The autoAbs were detected after screening of 216 patients' sera by using direct and inhibition ELISA with an N-terminal sequence of the MC4R. Binding to the native MC4R was evaluated by flow cytometry and pharmacological effects by measuring adenylyl cyclase activity. Results: Positive results in all tests were obtained in patients with overweight or obesity (prevalence: 3.6%) but not in normal weight patients. The selective binding properties of anti-MC4R autoAbs were confirmed by surface plasmon resonance and by immunoprecipitation with the native MC4R. Finally it was demonstrated that these autoAbs increased food intake in rats after passive transfer via intracerebroventricular injection. Conclusion: These observations suggest that inhibitory anti-MC4R autoAbs might contribute to the development of obesity in a small subpopulation of patients
    • …
    corecore