1,343 research outputs found

    Genomic analysis of four strains of Corynebacterium pseudotuberculosis bv. Equi isolated from horses showing distinct signs of infection.

    Get PDF
    The genomes of four strains (MB11, MB14, MB30, and MB66) of the species Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, completely assembled, and their gene content and structure were analyzed. The strains were isolated from horses with distinct signs of infection, including ulcerative lymphangitis, external abscesses on the chest, or internal abscesses on the liver, kidneys, and lungs. The average size of the genomes was 2.3 Mbp, with 2169 (Strain MB11) to 2235 (Strain MB14) predicted coding sequences (CDSs). An optical map of the MB11 strain generated using the KpnI restriction enzyme showed that the approach used to assemble the genome was satisfactory, producing good alignment between the sequence observed in vitro and that obtained in silico. In the resulting Neighbor-Joining dendrogram, the C. pseudotuberculosis strains sequenced in this study were clustered into a single clade supported by a high bootstrap value. The structural analysis showed that the genomes of the MB11 and MB14 strains were very similar, while the MB30 and MB66 strains had several inverted regions. The observed genomic characteristics were similar to those described for other strains of the same species, despite the number of inversions found. These genomes will serve as a basis for determining the relationship between the genotype of the pathogen and the type of infection that it causes

    Genome Sequence of Corynebacterium pseudotuberculosis MB20 bv. equi Isolated from a Pectoral Abscess of an Oldenburg Horse in California.

    Get PDF
    The genome of Corynebacterium pseudotuberculosis MB20 bv. equi was sequenced using the Ion Personal Genome Machine (PGM) platform, and showed a size of 2,363,089 bp, with 2,365 coding sequences and a GC content of 52.1%. These results will serve as a basis for further studies on the pathogenicity of C. pseudotuberculosis bv. equi

    Synthesis, characterisation and performance of (TiO2)(0.18)(SiO2)(0.82) xerogel catalysts

    Get PDF
    The synthesis of high surface area xerogels has been achieved using the sol-gel route. Heptane washing was used during the stages of drying to minimise capillary pressures and hence preserve pore structure and maximise the surface area. SAXS data have identified that heptane washing during drying, in general, results in a preservation of the pore structure and surface areas of up to 450 m(2) g(-1). O-17 NMR showed that Ti is fully mixed into the silica network in all of the samples. XANES data confirm that reversible 4-fold Ti sites are more prevalent in samples with high surface areas, as expected. The calcined xerogels were tested for their catalytic activity using the epoxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) as a test reaction, with excellent selectivities and reasonable percentage conversions. FT-IR spectroscopy has revealed that the catalytic activity is correlated with the intensity of the Si-O-Ti signal, after accounting for variations in Si-OH and Si-O-Si. The most effective catalyst was produced with heptane washing, a calcination temperature of 500 degreesC, and a heating rate of 5 degreesC min(-1)

    Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure

    Get PDF
    Stimuli-responsive behaviors of flexible metal-organic frameworks (MOFs) make these materials promising in a wide variety of applications such as gas separation, drug delivery, and molecular sensing. Considerable efforts have been made over the last decade to understand the structural changes of flexible MOFs in response to external stimuli. Uniform pore deformation has been used as the general description. However, recent advances in synthesizing MOFs with non-uniform porous structures, i.e. with multiple types of pores which vary in size, shape, and environment, challenge the adequacy of this description. Here, we demonstrate that the CO -adsorption-stimulated structural change of a flexible MOF, ZIF-7, is induced by CO migration in its non-uniform porous structure rather than by the proactive opening of one type of its guest-hosting pores. Structural dynamics induced by guest migration in non-uniform porous structures is rare among the enormous number of MOFs discovered and detailed characterization is very limited in the literature. The concept presented in this work provides new insights into MOF flexibility

    Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure.

    Get PDF
    Stimuli-responsive behaviors of flexible metal-organic frameworks (MOFs) make these materials promising in a wide variety of applications such as gas separation, drug delivery, and molecular sensing. Considerable efforts have been made over the last decade to understand the structural changes of flexible MOFs in response to external stimuli. Uniform pore deformation has been used as the general description. However, recent advances in synthesizing MOFs with non-uniform porous structures, i.e. with multiple types of pores which vary in size, shape, and environment, challenge the adequacy of this description. Here, we demonstrate that the CO2-adsorption-stimulated structural change of a flexible MOF, ZIF-7, is induced by CO2 migration in its non-uniform porous structure rather than by the proactive opening of one type of its guest-hosting pores. Structural dynamics induced by guest migration in non-uniform porous structures is rare among the enormous number of MOFs discovered and detailed characterization is very limited in the literature. The concept presented in this work provides new insights into MOF flexibility

    Molecular understanding of the catalytic consequence of ketene intermediates under confinement

    Get PDF
    [Image: see text] Neutral ketene is a crucial intermediate during zeolite carbonylation reactions. In this work, the roles of ketene and its derivates (viz., acylium ion and surface acetyl) associated with direct C–C bond coupling during the carbonylation reaction have been theoretically investigated under realistic reaction conditions and further validated by synchrotron radiation X-ray diffraction (SR-XRD) and Fourier transformed infrared (FT-IR) studies. It has been demonstrated that the zeolite confinement effect has significant influence on the formation, stability, and further transformation of ketene. Thus, the evolution and the role of reactive and inhibitive intermediates depend strongly on the framework structure and pore architecture of the zeolite catalysts. Inside side pockets of mordenite (MOR), rapid protonation of ketene occurs to form a metastable acylium ion exclusively, which is favorable toward methyl acetate (MA) and acetic acid (AcOH) formation. By contrast, in 12MR channels of MOR, a relatively longer lifetime was observed for ketene, which tends to accelerate deactivation of zeolite due to coke formation by the dimerization of ketene and further dissociation to diene and alkyne. Thus, we resolve, for the first time, a long-standing debate regarding the genuine role of ketene in zeolite catalysis. It is a paradigm to demonstrate the confinement effect on the formation, fate, and catalytic consequence of the active intermediates in zeolite catalysis

    Correctly validating results from single molecule data: the case of stretched exponential decay in the catalytic activity of single lipase B molecules

    Full text link
    The question of how to validate and interpret correctly the waiting time probability density functions (WT-PDFs) from single molecule data is addressed. It is shown by simulation that when a stretched exponential WT-PDF, with a stretched exponent alfa and a time scale parameter tau, generates the off periods of a two-state trajectory, a reliable recovery of the input WT-PDF from the trajectory is obtained even when the bin size used to define the trajectory, dt, is much larger than the parameter tau. This holds true as long as the first moment of the WT-PDF is much larger than dt. Our results validate the results in an earlier study of the activity of single Lipase B molecules and disprove recent related critique

    The fitness of African malaria vectors in the presence and limitation of host behaviour

    Get PDF
    <p>Background Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature.</p> <p>Methods Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae s.s in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on 6 host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives.</p> <p>Results Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials.</p> <p>Conclusions Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.</p&gt

    Structure-activity correlations for Brønsted acid, Lewis Acid, and photocatalyzed reactions of exfoliated crystalline niobium oxides

    Get PDF
    Exfoliated crystalline niobium oxides that contain exposed but interconnected NbO6 octahedra with different degrees of structural distortion and defects are known to catalyze Brønsted acid (BA), Lewis acid (LA), and photocatalytic (PC) reactions efficiently but their structure–activity relationships are far from clear. Here, three exfoliated niobium oxides, namely, HSr2Nb3O10, HCa2Nb3O10, and HNb3O8, are synthesized, characterized extensively, and tested for selected BA, LA, and PC reactions. The structural origin for BA is associated mainly with acidic hydroxyl groups of edge-shared NbO6 octahedra as proton donors; that of LA is associated with the vacant band position of Nb5+ to receive electron pairs from substrate; and that of PC is associated with the terminal Nb=O of NbO6 octahedra for photon capture and charge transfer to long-lived surface adsorbed substrate complex through associated oxygen vacancies in close proximity. It is believed that an understanding of the structure–activity relationships could lead to the tailored design of NbOx catalysts for industrially important reactions
    • …
    corecore