1,699 research outputs found

    Performance characteristics of an isolated coannular plug nozzle at transonic speeds

    Get PDF
    The Langley 16-Foot Transonic Tunnel was used to evaluate the performance characteristics of a coannular plug nozzle at static conditions (Mach number of 0) and at Mach numbers from 0.65 to 1.20. Jet total pressure ratio was varied from 1.0 (jet off) to 10.0. Thirty-seven configurations generated by the combination of three geometric variables - plug angle, shroud boattail length (fixed exit radius), and shroud extension length - were tested

    Acoustic test of a model rotor and tail rotor: Results for the isolated rotors and combined configuration

    Get PDF
    Acoustic data from a model scale main rotor and tail rotor experiment in the NASA Langley 14 by 22 Foot Subsonic Tunnel are presented for the main rotor and trail rotor in isolation and for the two rotors operating together. Results for the isolated main rotor show the importance of the rotor flapping conditions on mid-frequency noise content. High levels of main rotor retreating side blade-vortex interaction noise are shown to radiate downstream of the model. The isolated tail rotor noise results show the dominance of harmonic noise in the thrusting direction. The occurrence of tail rotor broadband noise is seen by the broadening of the tail rotor harmonics and is attributed to fuselage wake turbulence. The combined main and tail rotor data are presented to show the dominance of each rotor's different noise sources at different directivity locations

    Comparison of experimental surface pressures with theoretical predictions on twin two-dimensional convergent-divergent nozzles

    Get PDF
    A three-dimensional subsonic aerodynamic panel code (VSAERO) was used to predict the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle pressure coefficient distributions and external nozzle drag of nonaxisymmetric convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine high performance aircraft model. Nozzle static pressure coefficient distributions along the upper and lower surfaces near the model centerline and near the outer edges (corner) of the two surfaces were calculated, and nozzle drag was predicted using these surface pressure distributions. A comparison between the theoretical predictions and experimental wind tunnel data is made to evaluate the utility of the code in calculating the flow about these types of non-axisymmetric afterbody configurations. For free-stream Mach numbers of 0.60 and 0.90, the conditions where the flows were attached on the boattails yielded the best comparison between the theoretical predictions and the experimental data. For the Boattail terminal angles of greater than 15 deg., the experimental data for M = 0.60 and 0.90 indicated areas of separated flow, so the theoretical predictions failed to match the experimental data. Even though calculations of regions of separated flows are within the capabilities of the theoretical method, acceptable solutions were not obtained

    Higher physical fitness levels are associated with less language decline in healthy ageing

    Get PDF
    Healthy ageing is associated with decline in cognitive abilities such as language. Aerobic fitness has been shown to ameliorate decline in some cognitive domains, but the potential benefits for language have not been examined. In a cross-sectional sample, we investigated the relationship between aerobic fitness and tip-of-the-tongue states. These are among the most frequent cognitive failures in healthy older adults and occur when a speaker knows a word but is unable to produce it. We found that healthy older adults indeed experience more tip-of-the-tongue states than young adults. Importantly, higher aerobic fitness levels decrease the probability of experiencing tip-of-the-tongue states in healthy older adults. Fitness-related differences in word finding abilities are observed over and above effects of age. This is the first demonstration of a link between aerobic fitness and language functioning in healthy older adults

    When, why and how tumour clonal diversity predicts survival

    Get PDF
    The utility of intratumour heterogeneity as a prognostic biomarker is the subject of ongoing clinical investigation. However, the relationship between this marker and its clinical impact is mediated by an evolutionary process that is not well understood. Here, we employ a spatial computational model of tumour evolution to assess when, why and how intratumour heterogeneity can be used to forecast tumour growth rate and progression‐free survival. We identify three conditions that can lead to a positive correlation between clonal diversity and subsequent growth rate: diversity is measured early in tumour development; selective sweeps are rare; and/or tumours vary in the rate at which they acquire driver mutations. Opposite conditions typically lead to negative correlation. In cohorts of tumours with diverse evolutionary parameters, we find that clonal diversity is a reliable predictor of both growth rate and progression‐free survival. We thus offer explanations—grounded in evolutionary theory—for empirical findings in various cancers, including survival analyses reported in the recent TRACERx Renal study of clear‐cell renal cell carcinoma. Our work informs the search for new prognostic biomarkers and contributes to the development of predictive oncology

    Enclosing a pen to improve response rate to postal questionnaire: an embedded randomised controlled trial

    Get PDF
    Background: Poor response to questionnaires collecting outcome data in randomised controlled trials (RCTs) can affect the validity of trial results. The aim of this study within a trial (SWAT) was to evaluate the effectiveness of including a pen with a follow-up postal questionnaire on response rate. Methods: A two-armed RCT was embedded within SSHeW (Stopping Slips among Healthcare Workers), a trial of slip-resistant footwear to reduce slips in NHS staff. Participants were randomised 1:1 to receive a pen or no pen with their follow-up questionnaire. The primary outcome was the proportion of participants who returned the questionnaire. Secondary outcomes were: time to response, completeness of response, and whether a postal reminder notice was required. Data were analysed using logistic regression, linear regression and Cox proportional hazards regression. Results: Overall, 1466 SSHEW trial participants were randomised into the SWAT. In total, 13 withdrew from the host trial before they were due to be sent their follow-up questionnaire, 728 participants received a pen with their questionnaire, and 725 did not receive a pen. A questionnaire was returned from 67.7% of the pen group and 64.7% of the group who did not receive a pen. There was no significant difference in return rates between the two groups (OR 1.15, 95% CI 0.92 to 1.43, p=0.22), nor level of completeness of the questionnaires (AMD -0.01, 95% CI 0.06 to 0.05, p=0.77). There was weak evidence of a reduction in the proportion of participants requiring a reminder and in time to response in the pen group. Conclusion: Inclusion of a pen with the follow-up postal questionnaire sent to participants in the SSHeW trial did not statistically significantly increase the response rate. These results add to the body of evidence around improving response rates in trials. Trial registration: ISRCTN 33051393 (for SSHEW). Registered on 14/03/2017

    Crystal Structure of the Sodium Cobaltate Deuterate Superconductor NaxCoO2o4xD2O (x=1/3)

    Full text link
    Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na0.31(3)CoO2o1.25(2)D2O and its anhydrous parent compound Na0.61(1)CoO2. The deuterate superconducting compound is formed by coordinating four D2O molecules (two above and two below) to each Na ion in a way that gives Na-O distances nearly equal to those in the parent compound. One deuteron of the D2O molecule is hydrogen bonded to an oxygen atom in the CoO2 plane and the oxygen atom and the second deuteron of each D2O molecule lie approximately in a plane between the Na layer and the CoO2 layers. This coordination of Na by four D2O molecules leads to ordering of the Na ions and D2O molecules. The sample studied here, which has Tc=4.5 K, has a refined composition of Na0.31(3)CoO2o1.25(2)D2O, in agreement with the expected 1:4 ratio of Na to D2O. These results show that the optimal superconducting composition should be viewed as a specific hydrated compound, not a solid solution of Na and D2O (H2O) in NaxCoO2oyD2O. Studies of physical properties vs. Na or D2O composition should be viewed with caution until it is verified that the compound remains in the same phase over the composition range of the study.Comment: 22 pages, 8 figure

    Influence of extended dynamics on phase transitions in a driven lattice gas

    Full text link
    Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase transition in a driven lattice gas with nearest-neighbor exclusion on a square lattice. A slight extension of the microscopic dynamics with allowing the next-nearest-neighbor hops results in dramatic changes. Instead of the phase separation into high- and low-density regions in the stationary state the system exhibits a continuous transition belonging to the Ising universality class for any driving. The relevant features of phase diagram are reproduced by an improved mean-field analysis.Comment: 3 pages, 3 figure

    Analysis and prediction of defects in UV photo-initiated polymer microarrays

    Get PDF
    Polymer microarrays are a key enabling technology for the discovery of novel materials. This technology can be further enhanced by expanding the combinatorial space represented on an array. However, not all materials are compatible with the microarray format and materials must be screened to assess their suitability with the microarray manufacturing methodology prior to their inclusion in a materials discovery investigation. In this study a library of materials expressed on the microarray format are assessed by light microscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to identify compositions with defects that cause a polymer spot to exhibit surface properties significantly different from a smooth, round, chemically homogeneous ‘normal’ spot. It was demonstrated that the presence of these defects could be predicted in 85% of cases using a partial least square regression model based upon molecular descriptors of the monomer components of the polymeric materials. This may allow for potentially defective materials to be identified prior to their formation. Analysis of the PLS regression model highlighted some chemical properties that influenced the formation of defects, and in particular suggested that mixing a methacrylate and an acrylate monomer and/or mixing monomers with long and linear or short and bulky pendant groups will prevent the formation of defects. These results are of interest for the formation of polymer microarrays and may also inform the formulation of printed polymer materials generally.Burroughs Wellcome Fund (grant number 085245)Royal Society (Great Britain) (Wolfson Research Merit Award

    Chemoselective sequential click ligations directed by enhanced reactivity of an aromatic ynamine

    Get PDF
    Aromatic ynamines or N-alkynylheteroarenes are highly reactive alkyne components in Cu-catalyzed Huisgen [3 +2] cycloaddition (“click”) reactions. This enhanced reactivity enables the chemoselective formation of 1,4-triazoles using the representative aromatic ynamine N-ethynylbenzimidazole in the presence of a competing aliphatic alkyne substrate. The unique chemoselectivity profile of N-ethynylbenzimidazole is further demonstrated by the sequential click ligation of a series of highly functionalized azides using a heterobifunctional diyne, dispelling the need for alkyne protecting groups
    corecore