57 research outputs found

    New Limits to the Infrared Background: Bounds on Radiative Neutrino Decay and on Contributions of Very Massive Objects to the Dark Matter Problem

    Get PDF
    From considering the effect of γ-γ interactions on recently observed TeV gamma-ray spectra, improved limits are set to the density of extragalactic infrared photons which are robust and essentially model independent. The resulting limits are more than an order of magnitude more restrictive than direct observations in the 0.025–0.3 eV regime. These limits are used to improve constraints on radiative neutrino decay in the mass range above 0.05 eV and to rule out very massive objects as providing the dark matter needed to explain galaxy rotation curves. Lower bounds on the maximum distance which TeV gamma rays may probe are also derived

    Tev Observations of the Variability and Spectrum of Markarian 421

    Get PDF
    Markarian 421 was the first extragalactic source to be detected with high statistical certainty at TeV energies. The Whipple Observatory gamma-ray telescope has been used to observe the Active Galactic Nucleus, Markarian 421 in 1996 and 1997. The rapid variability observed in TeV gamma rays in previous years is confirmed. Doubling times as short as 15 minutes are reported with flux levels reaching 15 photons per minute. The TeV energy spectrum is derived using two independent methods. The implications for the intergalactic infra-red medium of an observed unbroken power law spectrum up to energies of 5 TeV is discussed.Comment: 4 pages, 4 figures, to appear in proceedings of 25 ICRC (Durban

    TeV Observations of the Variability and Spectrum of Markarian 501

    Get PDF
    Markarian 501 is only the second extragalactic source to be detected with high statistical certainty at TeV energies; it is similar in many ways to Markarian 421. The Whipple Observatory gamma-ray telescope has been used to observe the AGN Markarian 501 in 1996 and 1997, the years subsequent to its initial detection. The apparent variability on the one-day time-scale observed in TeV gamma rays in 1995 is confirmed and compared with the variability in Markarian 421. Observations at X-ray and optical wavelengths from 1997 are also presented.Comment: 4 pages, 2 figures, to appear in proceedings of 25th ICRC (Durban

    The Flux Variability of Markarian 501 in Very High Energy Gamma Rays

    Get PDF
    The BL Lacertae object Markarian 501 was identified as a source of gamma-ray emission at the Whipple Observatory in March 1995. Here we present a flux variability analysis on several times-scales of the 233 hour data set accumulated over 213 nights (from March 1995 to July 1998) with the Whipple Observatory 10 m atmospheric Cherenkov imaging telescope. In 1995, with the exception of a single night, the flux from Markarian 501 was constant on daily and monthly time-scales and had an average flux of only 10% that of the Crab Nebula, making it the weakest VHE source detected to date. In 1996, the average flux was approximately twice the 1995 flux and showed significant month-to-month variability. No significant day-scale variations were detected. The average gamma-ray flux above ~350 GeV in the 1997 observing season rose to 1.4 times that of the Crab Nebula -- 14 times the 1995 discovery level -- allowing a search for variability on time-scales shorter than one day. Significant hour-scale variability was present in the 1997 data, with the shortest, observed on MJD 50607, having a doubling time of ~2 hours. In 1998 the average emission level decreased considerably from that of 1997 (to ~20% of the Crab Nebula flux) but two significant flaring events were observed. Thus, the emission from Markarian 501 shows large amplitude and rapid flux variability at very high energies as does Markarian 421. It also shows large mean flux level variations on year-to-year time-scales, behaviour which has not been seen from Markarian 421 so far.Comment: 19 pages, 3 figures, to appear in ApJ, June 20, 1999, Vol. 518 #

    Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope

    Get PDF
    We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector, called CELESTE, used first 40, then 53 heliostats of the former solar facility "Themis" in the French Pyrenees to collect Cherenkov light generated in atmospheric particle cascades. The signal from Mrk 421 is often strong. We compare its flux with previously published multi-wavelength studies and infer that we are straddling the high energy peak of the spectral energy distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab flux near 100 GeV. The data analysis and understanding of systematic biases have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 -- corrected error in author lis
    corecore