586 research outputs found

    Bilateral multiple coronary artery fistulae with angina pectoris and syncope

    Get PDF
    AbstractCoronary artery fistulae (CAF) are rare cardiac anomalies. They frequently arise from the right coronary artery (RCA) with fistulae originating from the left anterior descending artery (LAD) or from multiple arteries being less common. They do not usually cause symptoms and are incidentally diagnosed on routine cardiac imaging. We report a 70years old male patient presenting with chest pain and syncope during physical activity. Diagnostic coronary angiography revealed bilateral multiple CAF originating from both the LAD and RCA. As high blood flow output was recognized in these large vascular anomalies contributing to ‘steal phenomenon’ surgical intervention was planned. This manuscript aimed to present the case and review the current literature for the management and treatment of these coronary anomalies

    Chondrogenic priming at reduced cell density enhances cartilage adhesion of equine allogeneic MSCs : a loading sensitive phenomenon in an organ culture study with 180 explants

    Get PDF
    Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x10(6) vs 1.0 x10(6)). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naive MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In all cases, the overall amount of lesion filling decreased from day 5 to 14 (p = 0.0156). Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage. Copyright (C) 2015 S. Karger AG, Base

    Relatie tussen huisvesting en fysieke gezondheidsproblemen van paarden: een enquête over de perceptie van paardeneigenaars

    Get PDF
    The objective of this preliminary study was to investigate the relationship between the housing conditions and the health and welfare of horses. A survey, based on a questionnaire containing 36 multiple choice questions about various aspects of the housing of horses was conducted. A questionnaire was sent via email to approximately 600 horse owners in Flanders. A total of 225 horse owners completed the questionnaire. The study provides a clear picture of the risk factors that horse owners in practice recognize and the link they see between housing related diseases. Although horse owners usually are sufficiently aware of these influences, they are not taken care of in practice. According to fifty percent of the respondents, the major reason is the impracticability of the advice of the veterinarian. According to the horse owners, the main risk factors affecting the health of horses are: draft, the lack of quarantine measures and the presence of (sharp) foreign objects in the stable. As a consequence, more than 50% of the respondents report nasal discharge and coughing as common problems in their horses. Sixty-seven percent of the horse owners are satisfied with the overall management of the stable. However, there is a widespread dissatisfaction with regard to quarantine measures, in case of a disease outbreak (30% of the horse owners) and in case of the introduction of new animals into a group (36%). Fifty percent of the respondents score their own stable infrastructure 8/10 or more while about one out of four is less satisfied (7/10) about the floor and the walls of their stables. The results of this study can help owners and veterinarians to identify housing factors that may increase the risk to health and welfare problems in horses. This should lead to an improved well-being of the modern, often prolonged - housed horse

    Radiological characterisation in view of nuclear reactor decommissioning: On-site benchmarking exercise of a biological shield

    Get PDF
    Nearly all decommissioning and dismantling (D&D) projects are steered by the characterisation of the plant being dismantled. This radiological characterisation is a complex process that is updated and modified during the course of the D&D. One of the tools for carrying out this characterisation is the performance of in-situ measurements. There is a wide variety of equipment and methodologies used to carry out on-site measurements, depending on the environment in which they are to be carried out and also on the specific objectives of the measurements and the financial and personnel resources available. The extent to which measurements carried out with different types of equipment or methodologies providing comparable results can be crucial in view of the D&D strategy development and the decision-making process. This paper concerns an on-site benchmarking exercise carried out at the activated biological shield of Belgian Reactor 3 (BR3). This activity allows comparison and validation of characterisation methodologies and different equipment used as well as future interpretation of final results in terms of uncertainties and sensitivities. This paper describes the measurements and results from the analysis of this exercise. Other aspects of this exercise will be reported in separate papers. This paper provides an overview of the on-site benchmarking exercise, outlines the participating organisations and the measurement equipment used for total gamma, dose rate and gamma spectrometry measurements and finally, results obtained and their interpretations are discussed for each type of measurement as a function of detector type. Regarding the dose measurements, results obtained by using a large variety of equipment are very consistent. In view of mapping the inner surface of the biological shield the most appropriate equipment tested might be the organic scintillator, the BGO or even the ionisation chamber. In addition, for mapping this surface, the most appropriate total gamma equipment tested might be the LaBr3_{3}(Ce), the thick organic scintillator or the BGO. These measurements can only be used as a secondary parameter in a relative way. Results for the gamma spectrometry are very consistent for all the equipment used and the main parameters to be determined

    The Dark Side of EGFP: Defective Polyubiquitination

    Get PDF
    Enhanced Green Fluorescent Protein (EGFP) is the most commonly used live cell reporter despite a number of conflicting reports that it can affect cell physiology. Thus far, the precise mechanism of GFP-associated defects remained unclear. Here we demonstrate that EGFP and EGFP fusion proteins inhibit polyubiquitination, a posttranslational modification that controls a wide variety of cellular processes, like activation of kinase signalling or protein degradation by the proteasome. As a consequence, the NF-κB and JNK signalling pathways are less responsive to activation, and the stability of the p53 tumour suppressor is enhanced in cell lines and in vivo. In view of the emerging role of polyubiquitination in the regulation of numerous cellular processes, the use of EGFP as a live cell reporter should be carefully considered

    A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth

    Get PDF
    [EN] Adverse environmental conditions trigger responses in plants that promote stress tolerance and survival at the expense of growth(1). However, little is known of how stress signalling pathways interact with each other and with growth regulatory components to balance growth and stress responses. Here, we show that plant growth is largely regulated by the interplay between the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1) protein kinase and the abscisic acid (ABA) phytohormone pathway. While SnRK2 kinases are main drivers of ABA-triggered stress responses, we uncover an unexpected growth-promoting function of these kinases in the absence of ABA as repressors of SnRK1. Sequestration of SnRK1 by SnRK2-containing complexes inhibits SnRK1 signalling, thereby allowing target of rapamycin (TOR) activity and growth under optimal conditions. On the other hand, these complexes are essential for releasing and activating SnRK1 in response to ABA, leading to the inhibition of TOR and growth under stress. This dual regulation of SnRK1 by SnRK2 kinases couples growth control with environmental factors typical for the terrestrial habitat and is likely to have been critical for the water-to-land transition of plants.We thank J.-K. Zhu for the snrk2 mutants, M. Bennett for the SnRK2.2-GFP line, C. Koncz for the SnRK1-GFP line, X. Li for the SnRK2.3-FLAG OE line, J. Schroeder for the GFP-His-FLAG and SnRK2.6-His-FLAG OE lines, C. Mackintosh for the TPS5 antibody and the Nottingham Arabidopsis stock centre for T-DNA mutant seeds. The IGC Plant Facility (Vera Nunes) is thanked for excellent plant care. This work was supported by Fundacao para a Ciencia e a Tecnologia through the R&D Units UIDB/04551/2020 (GREEN-IT-Bioresources for Sustainability) and UID/MAR/04292/2019, FCT project nos. PTDC/BIA-PLA/7143/2014, LISBOA-01-0145-FEDER-028128 and PTDC/BIA-BID/32347/2017, and FCT fellowships/contract nos. SFRH/BD/122736/2016 (M.A.), SFRH/BPD/109336/2015 (A.C.), PD/BD/150239/2019 (D.R.B.), and IF/00804/2013 (E.B.G.). Work in P.L.R.'s laboratory was funded by MCIU grant no. BIO2017-82503-R. C.M. thanks the LabEx Paris Saclay Plant Sciences-SPS (ANR-10-LABX-040-SPS) for support. B.B.P. was funded by Programa VALi+d GVA APOSTD/2017/039. This project has received funding from the European Union Horizon 2020 research and innovation programme (grant agreement no. 867426-ABA-GrowthBalance-H2020-WF-2018-2020/H2020-WF-01-2018, awarded to B.B.P.). This work is dedicated to the memory of our beloved friend and colleague Americo Rodrigues.Belda-Palazón, B.; Adamo, M.; Valerio, C.; Ferreira, LJ.; Confraria, A.; Reis-Barata, D.; Rodrigues, A.... (2020). A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nature Plants (Online). 6(11):1345-1353. https://doi.org/10.1038/s41477-020-00778-wS13451353611Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007).Baena-Gonzalez, E. & Sheen, J. Convergent energy and stress signaling. Trends Plant Sci. 13, 474–482 (2008).Nukarinen, E. et al. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci. Rep. 6, 31697 (2016).Rodrigues, A. et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25, 3871–3884 (2013).Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170 (2014).Fujii, H., Verslues, P. E. & Zhu, J. K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494 (2007).Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002).Umezawa, T. et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 17588–17593 (2009).Vlad, F. et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 3170–3184 (2009).Yoshida, R. et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310–5318 (2006).Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).Bitrian, M., Roodbarkelari, F., Horvath, M. & Koncz, C. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant J. 65, 829–842 (2011).Jossier, M. et al. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J. 59, 316–328 (2009).Lin, C. R. et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress. Plant Cell 26, 808–27 (2014).Lu, C. A. et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19, 2484–2499 (2007).Radchuk, R. et al. Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation. Plant J. 61, 324–338 (2010).Radchuk, R., Radchuk, V., Weschke, W., Borisjuk, L. & Weber, H. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. Plant Physiol. 140, 263–278 (2006).Tsai, A. Y. & Gazzarrini, S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant J. 69, 809–821 (2012).Tsai, A. Y. & Gazzarrini, S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front. Plant Sci. 5, 119 (2014).Zhang, Y. et al. Arabidopsis sucrose non-fermenting-1-related protein kinase-1 and calcium-dependent protein kinase phosphorylate conserved target sites in ABA response element binding proteins. Ann. Appl. Biol. 153, 401–409 (2008).Ramon, M. et al. Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development. Plant Cell 31, 1614–1632 (2019).Lopez-Molina, L., Mongrand, S. & Chua, N. H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. USA 98, 4782–4787 (2001).Garcia, D. & Shaw, R. J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017).Dobrenel, T. et al. The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. Front. Plant Sci. 7, 1611 (2016).Wang, P. et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69, 100–112 e106 (2018).Van Leene, J. et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327 (2019).Dietrich, D. et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3, 17057 (2017).Wu, Q. et al. Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28, 2178–2196 (2016).Belin, C. et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 1316–1327 (2006).Fujii, H. & Zhu, J. K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl Acad. Sci. USA 106, 8380–8385 (2009).Fujita, Y. et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123–2132 (2009).Nakashima, K. et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50, 1345–1363 (2009).Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009).Shen, W., Reyes, M. I. & Hanley-Bowdoin, L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol. 150, 996–1005 (2009).Cheng, C. et al. SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet. 13, e1006947 (2017).Harthill, J. E. et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47, 211–223 (2006).Song, Y. et al. Identification of novel interactors and potential phosphorylation substrates of GsSnRK1 from wild soybean (Glycine soja). Plant Cell Environ. 42, 145–157 (2018).Wang, X., Du, Y. & Yu, D. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. J. Integr. Plant Biol. 61, 509–527 (2019).Broeckx, T., Hulsmans, S. & Rolland, F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67, 6215–6252 (2016).Wang, Y. et al. AKINbeta1, a subunit of SnRK1, regulates organic acid metabolism and acts as a global modulator of genes involved in carbon, lipid, and nitrogen metabolism. J. Exp. Bot. 71, 1010–1028 (2020).Yoshida, T. et al. The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions. Plant Cell 31, 84–105 (2019).Zheng, Z. et al. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol. 153, 99–113 (2010).Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu Rev. Plant Biol. 61, 651–679 (2010).Kravchenko, A. et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochem. Biophys. Res. Commun. 467, 992–997 (2015).Salem, M. A., Li, Y., Wiszniewski, A. & Giavalisco, P. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J. 92, 525–545 (2017).Bakshi, A. et al. Ectopic expression of Arabidopsis target of rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Sci. Rep. 7, 42835 (2017).De Smet, I. et al. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 33, 543–555 (2003).Hrabak, E. M. et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666–680 (2003).Hauser, F., Waadt, R. & Schroeder, J. I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21, R346–R355 (2011).Umezawa, T. et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 51, 1821–1839 (2010)
    • …
    corecore