26 research outputs found

    Spatially targeted nature-based solutions can mitigate climate change and nature loss but require a systems approach

    Get PDF
    Funding Information: This study was funded by the Royal Society for the Protection of Birds (RSPB) and Natural England (project code ECM 58632). The Breeding Bird Survey is a Partnership between the BTO, RSPB, and Joint Nature Conservation Committee (on behalf of Natural Resources Wales, Natural England, Council for Nature Conservation and Countryside, and NatureScot) and relies on volunteer surveyors. Simon Gillings provided tetrad-level predictions of relative abundance for wading birds. We are grateful to members of the RSPB steering group, who contributed to the development of our scenarios, and Profs. Tim Benton and Andrew Balmford who commented on an earlier version of this manuscript. Conceptualization, T.F. R.B.B. T.B.-L. G.M.B. W.J.P. and R.H.F.; methodology, T.F. T.B.-L. J.P.C. D.M. P.S. and R.H.F.; software, T.F.; formal analysis, T.F.; resources, D.M.; data curation, T.F.; writing – original draft, T.F.; writing – review & editing, R.B.B. T.B.-L. G.M.B. J.P.C. D.M. P.S. W.J.P. and R.H.F.; visualization, T.F.; supervision, W.J.P. The authors declare no competing interests. Publisher Copyright: © 2023 The AuthorsPeer reviewedPublisher PD

    Measuring the intensity of conflicts in conservation

    Get PDF
    Conflicts between the interests of biodiversity conservation and other human activities pose a major threat to natural ecosystems and human well‐being, yet few methods exist to quantify their intensity and model their dynamics. We develop a categorization of conflict intensity based on the curve of conflict, a model originally used to track the escalation and deescalation of armed conflicts. Our categorization assigns six intensity levels reflecting the discourse and actions of stakeholders involved in a given conflict, from coexistence or collaboration to physical violence. Using a range of case studies, we demonstrate the value of our approach in quantifying conflict trends, estimating transition probabilities between conflict stages, and modeling conflict intensity as a function of relevant covariates. By taking an evidence‐based approach to quantifying stakeholder behavior, the proposed framework allows for a better understanding of the drivers of conservation conflict development across a diverse range of socioecological scenarios

    Percutaneous stereotactic en bloc excision of nonpalpable breast carcinoma: a step in the direction of supraconservative surgery

    Full text link
    peer reviewedRecently, the advanced breast biopsy instrumentation (ABBI) system has been introduced as an alternative to conventional breast biopsy techniques. This study was prospectively conducted to evaluate the potential of the ABBI method in locoregional management of a consecutive series of patients with nonpalpable mammographically detected breast carcinomas. Sixty-one consecutive patients underwent an ABBI procedure as a first step before possible surgery for nonpalpable breast lesions that would in any case require complete excision. For the 27 patients in whom the ABBI biopsy revealed malignancy further surgery was recommended, including re-excision of the biopsy site and axillary dissection in cases of infiltrating carcinoma. We calculated the probabilities that the ABBI specimen would have tumor-free margins and that a definitely complete excision had been achieved as a function of the mammographic or pathological diameter of the cancer. For cancer with a pathological diameter less than 10 mm, measured on the ABBI specimen, the probability (92%) of obtaining complete resection was significantly better than for larger lesions (P = 0.01, Fisher's exact test). Although the therapeutic perspectives for the ABBI method are limited at present, we suggest that this approach is a first step in the direction of a surgical strategy that is better adapted to the pathological characteristics peculiar to these small tumors, whose incidence is increasing. (C) 2002 Elsevier Science Ltd. All rights reserved

    The Acoustic Index User’s Guide: A practical manual for defining, generating and understanding current and future acoustic indices

    Get PDF
    1. Ecoacoustics, the study of environmental sound, is a rapidly growing discipline offering ecological insights at scales ranging from individual organisms to whole ecosystems. Substantial methodological developments over the last 15 years have streamlined extraction of ecological information from audio recordings. One widely used set of methods are acoustic indices, which offer numerical summaries of the spectral, temporal and amplitude patterns in audio recordings. 2. Currently, the specifics of each index’s background, methodology, and the soundscape patterns they are designed to summarise, are spread across multiple sources. Critically, details of index calculation are sometimes scarce, making it challenging for users to understand how index values are generated. Discrepancies in understanding can lead to misuse of acoustic indices or reporting of spurious results. This hinders ecological inference, replicability, and discourages adoption of these tools for conservation and ecosystem monitoring, where they might otherwise provide useful insight.  3. Here we present the Acoustic Index User’s Guide - an interactive RShiny web app that defines and deconstructs eight of the most commonly used acoustic indices to facilitate consistent application across the discipline. We break the acoustic indices calculations down into easy-to-follow steps to better enable practical application and critical interpretation of acoustic indices. We demonstrate typical soundscape patterns using a suite of 91 example audio recordings: 66 real-world soundscapes from terrestrial, aquatic, and subterranean systems around the world, and 25 synthetic files demonstrating archetypal soundscape patterns. Our interpretation figures signpost specific soundscape patterns likely to be reflected in acoustic indices’ values. 4. This RShiny app is a living resource; additional acoustic indices will be added in the future through collaboration with authors of pre-existing and new indices. The app also serves as a best-practice template for the information required when publishing new acoustic indices, so that authors can facilitate the widest possible understanding and uptake of their indices. In turn, improved understanding of acoustic indices will aid effective hypothesis generation, application, and interpretation in ecological research, ecosystem monitoring, and conservation management.Additional authors: Magnus Janson, Thomas Luypaert, Oliver C. Metcalf, Anna E. Nousek-McGregor, Frederica Poznansky, Samuel R. P.-J. Ross, Sarab Sethi, Siobhan Smyt

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.Additional co-authors: Samuel E. I. Jones, Claire Vincent, Anna G. Phillips, Nicola M. Marples, Flavia A. Montaño-Centellas, Victor Leandro-Silva, Santiago Claramunt, Bianca Darski, Benjamin G. Freeman, Tom P. Bregman, Christopher R. Cooney, Emma C. Hughes, Elliot J. R. Capp, Zoë K. Varley, Nicholas R. Friedman, Heiko Korntheuer, Andrea Corrales-Vargas, Christopher H. Trisos, Brian C. Weeks, Dagmar M. Hanz, Till Töpfer, Gustavo A. Bravo, Vladimír Remeš, Larissa Nowak, Lincoln S. Carneiro, Amilkar J. Moncada R., Beata Matysioková, Daniel T. Baldassarre, Alejandra Martínez-Salinas, Jared D. Wolfe, Philip M. Chapman, Benjamin G. Daly, Marjorie C. Sorensen, Alexander Neu, Michael A. Ford, Luis Fabio Silveira, David J. Kelly, Nathaniel N. D. Annorbah, Henry S. Pollock, Ada M. Grabowska-Zhang, Jay P. McEntee, Juan Carlos T. Gonzalez, Camila G. Meneses, Marcia C. Muñoz, Luke L. Powell, Gabriel A. Jamie, Thomas J. Matthews, Oscar Johnson, Guilherme R. R. Brito, Kristof Zyskowski, Ross Crates, Michael G. Harvey, Maura Jurado Zevallos, Peter A. Hosner, James M. Maley, F. Gary Stiles, Hevana S. Lima, Kaiya L. Provost, Moses Chibesa, Mmatjie Mashao, Jeffrey T. Howard, Edson Mlamba, Marcus A. H. Chua, Bicheng Li, M. Isabel Gómez, Natalia C. García, Martin Päckert, Jérôme Fuchs, Jarome R. Ali, Elizabeth P. Derryberry, Monica L. Carlson, Rolly C. Urriza, Kristin E. Brzeski, Dewi M. Prawiradilaga, Matt J. Rayner, Eliot T. Miller, Rauri C. K. Bowie, René-Marie Lafontaine, R. Paul Scofield, Yingqiang Lou, Lankani Somarathna, Denis Lepage, Marshall Illif, Eike Lena Neuschulz, Mathias Templin, D. Matthias Dehling, Jacob C. Cooper, Olivier S. G. Pauwels, Kangkuso Analuddin, Jon Fjeldså, Nathalie Seddon, Paul R. Sweet, Fabrice A. J. DeClerck, Luciano N. Naka, Jeffrey D. Brawn, Alexandre Aleixo, Katrin Böhning-Gaese, Carsten Rahbek, Susanne A. Fritz, Gavin H. Thomas, Matthias Schleunin

    Modeling the potential distribution of the threatened Grey-necked Picathartes Picathartes oreas across its entire range

    Get PDF
    Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat forthe Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”

    Good practice guidelines for long-term ecoacoustic monitoring in the UK

    Get PDF
    The popularity of ecoacoustics as an innovative environmental discipline has enjoyed immensegrowth within the last five years, to a point where it is now becoming difficult to keep up withall the new research papers published. What soon becomes apparent, however, is a lack ofconsensus on which recording and analysis protocols to follow; partly a result of the differingrequirements of each research project, but also an historical artefact of the tropical originsof much of this research. As more acoustic long-term monitoring schemes start to becomeestablished throughout the UK and neighbouring countries there arises a need to adopt a morecommon set of protocols, more akin to our temperate conditions, to allow for valid future analysisand comparison. To that end a group of ecoacoustic researchers and practitioners met in June2022 to discuss the formulation of such a set. This work was then taken forward by the authors togenerate the guidelines contained herein.Digital technologies now allow us the ability to record our acoustic environments widely, withrelative ease; and to subject the resulting recordings to an ever-expanding range of analyticalmethods. This opens up the potential to create new approaches to gauging biodiversity andassessing the changing fortunes of species and their habitats. To maximise these benefits itis vitally important that we secure now, and into the future, data which will illustrate baselineassessments and highlight change. These guidelines therefore provide welcome instruction andconformity, particularly for those new to ecoacoustics. Please use them, as appropriate, to helpguide your own contributions to the growing awareness, and use, of sound as an environmentalmetric within the UK and Europe

    State of nature 2023

    Get PDF
    This is the fourth State of Nature Report. It provides a comprehensive overview of species trends across the UK, including specific assessments for England, Northern Ireland, Scotland and Wales, and for the UK’s Overseas Territories
    corecore