1,387 research outputs found
Radiographic Visualization of Arterial Lesions in Cholesterol-Fed Rabbits
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67327/2/10.1177_000331977102200703.pd
Probabilistic models of information retrieval based on measuring the divergence from randomness
We introduce and create a framework for deriving probabilistic models of Information Retrieval. The models are nonparametric models of IR obtained in the language model approach. We derive term-weighting models by measuring the divergence of the actual term distribution from that obtained under a random process. Among the random processes we study the binomial distribution and Bose--Einstein statistics. We define two types of term frequency normalization for tuning term weights in the document--query matching process. The first normalization assumes that documents have the same length and measures the information gain with the observed term once it has been accepted as a good descriptor of the observed document. The second normalization is related to the document length and to other statistics. These two normalization methods are applied to the basic models in succession to obtain weighting formulae. Results show that our framework produces different nonparametric models forming baseline alternatives to the standard tf-idf model
Recommended from our members
Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach
The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research
Do cladistic and morphometric data capture common patterns of morphological disparity?
The distinctly non-random diversity of organismal form manifests itself in discrete clusters of taxa that share a common body plan. As a result, analyses of disparity require a scalable comparative framework. The difficulties of
applying geometric morphometrics to disparity analyses of groups with vastly divergent body plans are overcome partly by the use of cladistic characters. Character-based disparity analyses have become increasingly popular, but it is not clear how they are affected by character coding strategies or revisions of primary homology statements. Indeed, whether cladistic and morphometric data capture similar patterns of morphological variation remains a moot point. To address this issue, we employ both cladistic and geometric morphometric data in an exploratory study of disparity focussing on caecilian amphibians. Our results show no impact on relative intertaxon distances when different coding strategies for cladistic characters were used or when revised concepts of homology were considered. In all instances, we found no statistically significant difference between pairwise Euclidean and Procrustes distances, although the strength of the correlation among distance matrices varied. This suggests that cladistic and geometric morphometric data appear to summarize morphological variation in comparable ways. Our results support the use of cladistic data for characterizing organismal disparity
Distorted body representations in healthy cognition
Delusions and misperceptions about the body are a conspicuous feature of numerous neurological and psychiatric conditions. In stark contrast to such pathological cases, the immediacy and familiarity of our ordinary experience of our body can make it seem as if our representation of our body is highly accurate, even infallible. Recent research has begun to demonstrate, however, that large and systematic distortions of body representation are a normal part of healthy cognition. Here, I will describe this research, focusing on distortions of body representations underlying tactile distance perception and position sense. I will also discuss evidence for distortions of higher-order body representations, such as the conscious body image. Finally, I will end with a discussion of the potential relations among different body representations and their distortions
Maternal Drinking During Pregnancy: Attention and Short-Term Memory in 14-Year-Old Offspring—A Longitudinal Prospective Study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66151/1/j.1530-0277.1994.tb00904.x.pd
Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies.
Colour pattern is the main trait that drives mate recognition between Heliconius species that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species Heliconius melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. In order to test which cues differ between species, and potentially contribute to reproductive isolation, we quantified differences in the wing phenotype and the male chemical profile. As expected, the wing colour pattern was indistinguishable between the two species, while the chemical profile of the androconial and genital males' extracts showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic component for both chemical production and preference. Altogether, these results suggest that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species
A Compromise between Neutrino Masses and Collider Signatures in the Type-II Seesaw Model
A natural extension of the standard gauge
model to accommodate massive neutrinos is to introduce one Higgs triplet and
three right-handed Majorana neutrinos, leading to a neutrino mass
matrix which contains three sub-matrices ,
and . We show that three light Majorana neutrinos (i.e., the mass
eigenstates of , and ) are exactly massless in this
model, if and only if
exactly holds. This no-go theorem implies that small but non-vanishing neutrino
masses may result from a significant but incomplete cancellation between
and terms in the Type-II
seesaw formula, provided three right-handed Majorana neutrinos are of TeV and experimentally detectable at the LHC. We propose three simple
Type-II seesaw scenarios with the flavor symmetry to
interpret the observed neutrino mass spectrum and neutrino mixing pattern. Such
a TeV-scale neutrino model can be tested in two complementary ways: (1)
searching for possible collider signatures of lepton number violation induced
by the right-handed Majorana neutrinos and doubly-charged Higgs particles; and
(2) searching for possible consequences of unitarity violation of the neutrino mixing matrix in the future long-baseline neutrino oscillation
experiments.Comment: RevTeX 19 pages, no figure
Building and Testing a Statistical Shape Model of the Human Ear Canal
Abstract. Today the design of custom in-the-ear hearing aids is based on personal experience and skills and not on a systematic description of the variation of the shape of the ear canal. In this paper it is described how a dense surface point distribution model of the human ear canal is built based on a training set of laser scanned ear impressions and a sparse set of anatomical landmarks placed by an expert. The landmarks are used to warp a template mesh onto all shapes in the training set. Using the vertices from the warped meshes, a 3D point distribution model is made. The model is used for testing for gender related differences in size and shape of the ear canal.
- …