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Colour pattern is the main trait that drives mate recognition between
Heliconius species that are phylogenetically close. However, when this cue
is compromised such as in cases of mimetic, sympatric and closely related
species, alternative mating signals must evolve to ensure reproductive
isolation and species integrity. The closely related species Heliconius
melpomene malleti and H. timareta florencia occur in the same geographical
region, and despite being co-mimics, they display strong reproductive iso-
lation. In order to test which cues differ between species, and potentially
contribute to reproductive isolation, we quantified differences in the wing
phenotype and the male chemical profile. As expected, the wing colour
pattern was indistinguishable between the two species, while the chemical
profile of the androconial and genital males’ extracts showed marked differ-
ences. We then conducted behavioural experiments to study the importance
of these signals in mate recognition by females. In agreement with our
previous results, we found that chemical blends and not wing colour pattern
drive the preference of females for conspecific males. Also, experiments with
hybrid males and females suggested an important genetic component for
both chemical production and preference. Altogether, these results suggest
that chemicals are the major reproductive barrier opposing gene flow
between these two sister and co-mimic species.
1. Introduction
The mechanisms by which species maintain their integrity are diverse and
involve a combination of multiple signals of intra- and interspecific communi-
cations such as chemical, visual, auditory and tactile cues [1–5]. In particular,
sexual communication in insects involves long- and short-range pheromones,
which play multiple roles [3,4,6,7]. For instance, pheromones can communicate
the mating status of females [8,9], quality and age of males [10,11], quality and
quantity of nuptial gifts [12], body size [13], dominance status [14] and degree
of relatedness [15]. Also, chemicals play an important role in mate choice and
species recognition [16,17]. In particular, pheromones mediate mate choice in
many insects including flies (Drosophila), grasshoppers (Chorthippus parallelus),
leaf beetles (Chrisochus) and stick insects (Timema) [16–23].

In Lepidoptera, males and females produce volatile and non-volatile
compounds, suggesting that chemical communication plays a critical role in
inter- and intraspecific communications [24–26]. In Bicyclus anynana, visual
and chemical cues are equally important for mate choice, and females recognize
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heterospecific males based on their pheromones [27]. Also,
males of Heliconius charithonia, which engage in pupal mating
by copulating with females as they eclose, can identify the sex
of a conspecific pupa based on sex-specific compounds
[28,29]. Moreover, chemical cues seem tomediate species recog-
nition among mimetic and distantly related Heliconius species
where conflicts between mimicry and sexual communication
may arise [30–32]. This is supported by the fact that males of
Heliconius have species-specific mixtures in their wing androco-
nia (i.e. specializedmalewingscales thatproducescents) [32,33].

In Heliconius, mate discrimination between closely related
species relies on the wing colour pattern [34,35]. For example,
the sister species H. melpomene and H. cydno (divergence
approx. 1.5–2 Ma) [36], which are sympatric across Central
America and the Andes, not only differ in habitat use but
also in wing coloration [37–39]. In fact, multiple experiments
show that males prefer to court females exhibiting their own
colour pattern [34,40,41]. By contrast, the phylogenetically
close H. melpomene malleti and H. timareta florencia mimic each
other and coexist in sympatry in the Andes in southeastern
Colombia (electronic supplementary material, figure S1).
Despite their phenotypic resemblance, this species pair shows
strong premating ecological isolation (differences in host plant
preference) as well as strong reproductive isolation tested in
no-choice experiments [40,42]; even so, a low number of
hybrids are found in nature (approx. 2%) [31,40]. Therefore,
the strong reproductive isolation between H. m. malleti and
H. t. florencia implies that sexual isolation is mediated by cues
other than the colour pattern, such as chemical cues [31,32,41].

In agreement with this hypothesis, previous studies showed
that the two species differ in their androconia and genital chemi-
cal composition,although these studies included fewindividuals
[30,32]. Furthermore, we previously showed that females of
H.m.malletiandH. t. florencia stronglydiscriminatedagainst con-
specific males which have their androconia experimentally
blocked, affecting reproductive success with implications for
reproductive isolation. This suggests that chemical signalling is
important in mate choice inHeliconius butterflies [43].

Nonetheless, we need to investigate more on (i) the pre-
ference of females for conspecific versus heterospecific
male chemical blends in order to understand their role and
importance in reproductive isolation, and (ii) the inheritance
patterns of both male chemical production and female prefer-
ence for them, and thus contribute to our understanding
of the genetic architecture of speciation. Here, we used a
combination of behavioural and chemical analyses to get a
better understanding of reproductive isolation meditated by
chemical signals in Heliconius butterflies.
2. Material and methods
(a) Quantification of the wing phenotype
To quantify colour, we used wings of wild males of H. t. florencia
and H. m. malleti deposited in the Colección de Artrópodos de la
Universidad del Rosario (CAUR229) (electronic supplementary
material, table S1) and evaluated whether H. m. malleti and
H. t. florencia exhibit differences in the wing phenotype. In order
to do this, we scanned ventral and dorsal forewings and hindwings
of 43 H. m. malleti and 45 H. t. florencia using a high-resolution
Epson Perfection V550 flatbed scanner, in RGB colour format
with a resolution of 2400 dpi. Right-side wings were always used.
Then,we used ImageJ [44] to place a set of 34 landmark coordinates
per individual (dorsally and ventrally; electronic supplementary
material, figure S2A). These landmark coordinates were analysed
in the R package Patternize [45] to quantify variation in wing
colour patterns (band size and shape). This package extracts, trans-
forms and superimposes colour patterns to finely quantify the
variation of colour pattern among species, and performs a principal
component analysis (PCA) on the binary representation of
the aligned colour pattern obtained from each sample with the
sumRaster function [45]. We then tested differences in the wing
pattern among species using a multivariate analysis of variance
(MANOVA) in R based on a subset of PCs (those that explain
greater than 95% of the variation).

In addition, we used tpsDig2 [46] to place 32 landmark
coordinates on the outline of both forewing and hindwing
(dorsally; electronic supplementary material, figure S2B). These
landmark coordinates were superimposed using a general Pro-
crustes analysis (GPA) in the R package ‘geomorph’ [47–49]. The
resulting coordinates in the tangent space were used as shape
data, while the log-transformed centroid size [48] was used as a
size estimate [50]. Differences in wing size among species were
investigated with a one-way ANOVA with size as a dependent
variable and species as a factor, followed by Tukey’s pairwise com-
parison test. Differences in wing shape among species were tested
using a ProcrustesMANOVAapplied to the aligned landmark con-
figurations. This was done using the procD.lm function in the
‘geomorph’ R package [47].

(b) Wild sampling and interspecific crosses
We collected wild individuals of H. t. florencia and H. m. malleti in
the localities of Sucre and Doraditas (Colombia) that were taken to
the insectaries of the Universidad del Rosario in La Vega (Colom-
bia) to establish stock populations for the behavioural experiments
and chemical analyses. Larvae were reared on Passiflora oerstedii,
while adults were provided with Psiguria sp. as a pollen source
and supplied with approximately 20% sugar solution.

We also used the stock populations to perform interspecific
crosses between H. t. florencia and H. m. malleti. To do so, a
female of H. t. florencia was mated with a male of H. m. malleti
(the reciprocal cross was successful three times, but the female
always died before laying eggs). Then, two F1 males were back-
crossed to pure H. t. florencia females (crosses towards females of
H. m. malleti consistently failed). In all cases, eggs were collected
daily and placed in small plastic pots. Larvae were reared indivi-
dually to avoid cannibalism, and right before pupation, they
were transferred to bigger plastic pots until eclosion. The two back-
crosses towards H. t. florencia produced 25 males and 25 females:
all males were processed to characterize the composition of
their chemical blends, while 24 females were used in behavioural
experiments testing for female preference (see below).

Field collections and insectary rearing were conducted under
permit no. 530 issued by the Autoridad Nacional de Licencias
Ambientales of Colombia (ANLA). Rearing conditions and
experimental crosses were approved by the Ethics Committee of
Universidad del Rosario (approval no. CEI-ABN026-000155).

(c) Behavioural experiments
To test female preference for colour pattern and chemical cues
of conspecific males, we conducted two types of behavioural
experiments in triads: (i) altering the wing phenotype of males
and (ii) perfuming males with the heterospecific chemical
blends. All experiments were conducted from 7.00 to 13.00, check-
ing every 30 min for mating; the experiments stopped when
mating occurred. For each experiment, mature males (at least
10 days old) were randomly selected from the stock population,
while females were used as soon as they became available. If no
mating occurred on the first day, we repeated the experiment the
next day using the same butterflies; by contrast, mated males or
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females were never re-used. If no mating occurred after the second
day, the experiment stopped. For the first hour of each experiment,
we observed female behaviour towards the males. These beha-
viours were recorded only when a male was actively courting
the female. Observations were divided into 1 min intervals, and
we recorded female behaviours of ‘acceptance’ or ‘rejection’ pre-
viously defined [43,51]. Specifically, we recorded the following
acceptance behaviours: flutter (slow andmoderatewing flapping),
fly towards (flight facing towards the male), slow flat (slow
rhythmic flight), and wings open and exposed (wings open and
abdomen relaxed). Similarly, we recorded the following rejection
behaviours: fly away (flight away from the male), tucked up
(alighted with wings closed and abdomen concealed within the
wings), rapid and erratic flutter (high frequency flutter of her
wings and abdomen raised when the male is in close proximity),
and wings opened and abdomen bend (wings opened and
abdomen raised, but without wing fluttering).

In the triads that tested female preference for colour pattern, a
single 1-day-old virgin femalewas presented with two conspecific
males of at least 10 days old. One of the males (treatment) had his
forewing and hindwing completely blacked out using a black
marker (COPIC 100), thus hiding his wing colour pattern. The
second male (control) had his forewing and hindwing painted
with a colourless marker (COPIC 0); in this way, the male kept
his phenotype unaltered, but we controlled for any odour effect
of the marker. We tested a total of 20 females per species.

For the triads that tested female preference for chemical sig-
nals, we first prepared extracts from sexually mature males of
each species by dissecting and mixing the androconia region of
five conspecific individuals of the same age and soaking them in
200 µl of hexane for 1 h. After this incubation, the solvent
was transferred to a new vial and stored at −20°C until needed.
Then, a single 1-day-old virgin female was presented with two
sexually mature conspecific males. Both males were initially trea-
ted with transparent nail varnish applied on the dorsal side
of their hindwing in order to block their androconia and thus
block their natural emission of chemicals. Then, one of the males
(control) was perfumed by spreading the conspecific hexane
extract in the androconia region, whereas the second male (treat-
ment) was perfumed by spreading the heterospecific hexane
extract. A total of 19 females of H. t. florencia and 18 females of
H. m. malleti were tested. In order to investigate how long
the hexane extract remains in the wings of the perfumed males
before completely evaporating (which can potentially affect our
results), we blocked the hindwing androconia of nine males
of each species using transparent nail varnish and then, we re-
perfumed this region by spreading the heterospecific hexane
extract. We left these males fly in an insectary and dissected their
androconia at 1, 30 or 60 min, and soaked this tissue in 200 µl of
ultrapure dichloromethane (Merck UniSolv) to be later analysed
by gas chromatography/mass spectrometry (GC/MS; see below).

We also studied hybrid female preference. A single virgin
hybrid female had to choose between two males, one
H. t. florencia and oneH.m. malleti.A total of 18 F1 and 24 backcross
1-day-old virgin females were tested. These triads were conducted
in the same way as the previous behavioural experiments. Female
acceptance or rejection behaviours were also recorded.

The mating outcome was analysed with a binomial test.
We also used a generalized linear mixed model (GLMM) with
a binomial error distribution and a logit link function to test if
females responded differently to control and treatment males.
The response variable was derived from those minutes where
at least one of the males courted the female regardless of
her response (either ‘acceptance’ or ‘rejection’). Significance was
determined by using likelihood ratio tests comparing models
with and without the male type included as an explanatory vari-
able. In order to avoid pseudoreplication, individual female was
included as a random effect in all models. All statistical analyses
were performed with R v. 3.3.2 [52], using the packages lme4
[53], ggplot2 [54], car [55] and binom [56] following Darragh
et al. [43].

(d) Characterization of chemical profiles
To determine the chemical composition of the volatile compounds
of the androconia and genitalia in males of H. m. malleti,
H. t. florencia and their hybrids (F1 and backcrosses), we dissected
both tissues from adults and placed them individually in 200 µl
of ultrapure dichloromethane (Merck UniSolv) in 2 ml glass vials
and soaked for 1 h. After this incubation, the solvent
was transferred to a new vial and stored at −20°C. We used
dichloromethane since it is sufficiently volatile for extracts to be
concentrated without exposing them to high temperatures, it is
non-flammable, and penetrates wing scales better than hexane
leading to higher extract titres [57,58].

These extracts were analysed by GC/MS at the Smithsonian
Tropical Research Institute following a previous protocol [32].
Prior to the GC/MS, samples were evaporated under ambient air
at room temperature. Then, we quantified the compounds found
in the extracts using a Hewlett-Packard GCmodel 5977mass-selec-
tive detector, connected to a Hewlett-Packard GCmodel 7890B and
equippedwith a Hewlett-Packard ALS 7693 autosampler. A BPX-5
fused silica capillary column (SGE, 25 m× 0.22 mm, 0.25 µm) was
used. Injection was performed in a splitless mode (250°C injector
temperature) with helium as the carrier gas with a constant flow
of 1.2 ml min−1. The temperature programme started at 50°C,
held for 5 min and then rose to 320°C with a heating rate of
5°C min−1. We used 2-tetradecyl acetate (200 ng) as an internal
standard. Components were identified by the comparison of mass
spectra and gas chromatographic retention index with reference
samples from the Schulz lab collection (Institute of Organic
Chemistry, Technische Universität Braunschweig). Relative
concentrations were determined by peak area analysis by GC/MS.

To evaluate species differences in compound composition, we
implemented a dimension reduction (PCAs) using the software
PAST v. 3.0 [59]. We retained the components accounting for 95% of
thevariance, and thosewereused to conduct adiscriminantanalysis.
AMANOVAwasperformed in candiscRpackage [60]. Finally, using
the means of the relative concentrations of each compound, we
established the relationship among H. t. florencia, H. m. malleti, F1
and backcross males for androconia and genital bouquet (i.e. mix-
ture of volatiles), and calculated dendrograms using the Euclidian
distance. Both dendrogram and compound composition were
visualized using the function heatmap in R (v. 3.5.0).
3. Results
(a) Quantification of the wing phenotype
We found that H. m. malleti and H. t. florencia are significantly
different in wing size, both in the forewing and hindwing
(ANOVA F1,82 = 63.894, p < 0.01 and F1,82 = 82.587, p < 0.01,
respectively, electronic supplementary material, figure S3A,
B). Forewings and hindwings of H. t. florencia are consistently
larger than those of H. m. malleti. In terms of shape, the fore-
wing is statistically different between species (MANOVA,
F1,78 = 28.09, p < 0.01), but not the hindwing (MANOVA,
F1,78 = 2.969, p > 0.01; α = 0.01; electronic supplementary
material, figures S3C,D and S4A). In the forewing, the most
variable landmark coordinates were landmark 3, landmark 4
(located in the distal part of the costal margin, near the wing
apex; electronic supplementary material, figures S2C,D and
S4B) and landmark 15 (located in the middle of the inner
margin; electronic supplementary material, figures S2E,F and
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Figure 1. (a) Proportion of courtships that resulted in female behavioural responses towards control and treatment males. (b) Female behavioural responses towards
conspecific males ‘perfumed’ with a hexane extract from five males of either H. m. malleti or H. t. florencia. Behaviours are classified as acceptance (A) or rejection
(R). Control males are represented in red (left) and treatment males in blue (right). Means are marked with a black square and boxplots mark the interquartile
ranges. Asterisk next to the species’s name is indicative of statistically significance ([α] = 0.01) according to the GLMM. (Online version in colour.)
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S4C). Thus, the significant shape variation between the two
species appears to be linked with the length of the forewing
(longer in H. t. florencia) and the curvature of the inner
margin (deeper in H. t. florencia).

The colour pattern comparison between the two species
suggested subtle differences in the wing colour pattern (elec-
tronic supplementary material, figure S5). The shape (PC2) of
the three wing elements investigated (forewing band, forew-
ing ‘dennis’ patch and hindwing rays) did not differ between
species, but their size (PC1) was slightly different (electronic
supplementary material, figure S5). Despite this, none of
these differences were statistically significant, indicating that
the two species are almost indistinguishable in terms of
wing colour pattern.
(b) Behavioural experiments
Altering the wing pattern of males had no effect on mating
probability. In all 40 experiments, both H. t. florencia and
H.m. malleti femalesmated readily with conspecific males com-
pletely blacked (exact binomial test, p = 0.55 in both cases;
electronic supplementary material, figure S6). Consistent with
this finding, we found no differences in the female response
towards control and treatment males in all but one of the accep-
tance and rejection behaviours we assayed (figure 1a; electronic
supplementarymaterial, table S2). The exceptionwas the obser-
vation that female H. t. florencia kept their wings open for a
larger proportion of the time during courtship by control
males relative to male whose wing patterns were eliminated
(open wings; figure 1a).
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The triads testing female preference for perfumed males
(n = 37) did not yield any matings. The failure to mate might
reflect the rapid evaporation rate of the chemical extracts. For
example, the concentration of octadecanal decreased 25% in
the first 30 min and 82% after 60 min (electronic supplementary
material, figure S7 and table S4). Similarly, the concentration of
syringaldehyde decreased 25% in the first 30 min and 47% after
the first hour. Nevertheless, we observed significant differences
in female behavioural responses towards treatment and control
males (figure 1b; electronic supplementary material, table S3).
Specifically, in all behaviours tested, females exhibited accep-
tance behaviours towards males perfumed with the hexane
extract of their own species and consistently rejected males
perfumed with that of the other species.

F1 and backcross females obtained from mating an F1
female to a H. t. florencia male were reluctant to mate either
parental species. In these trials, F1 mated at 33% frequency
and backcross females at 37% frequency; in all cases matings
were with H. t. florencia males (electronic supplementary
material, figure S8). This agrees with previously unpublished
no-choice experiments where F1 mated at 25% frequency and
backcross females at 37% frequency, always with H. t. florencia
males (electronic supplementary material, table S8). Consist-
ently, hybrid females were more likely to perform acceptance
behaviours towards H. t. florencia males, while rejection beha-
viours were observed more often towards H. m. malleti males
in most of the traits measured (electronic supplementary
material, table S5).

(c) Characterization of chemical profiles
We analysed 100 wing androconia and 95 abdominal gland
extracts from males of H. m. malleti (nand = 31, ngland = 28),
H. t. florencia (nand = 33, ngland = 32), F1 (nand = 11, ngland = 11)
and backcrosses to H. t. florencia (nand = 25, ngland = 24). Males
of both species presented a common composition in the wing
androconia extract, and the most notable differences were
in terms of the concentration of individual compounds in
the blend (electronic supplementary material, table S6). The
compounds of the androconial region in H. m. malleti were
mainly alkanes (28%), aldehydes (16.27%) and unknown
compounds (18%), with octadecanal being the most abundant
compound (1094.91 ng in H. m. malleti compared with 1.40 ng
inH. t. florencia). InH. t. florencia, the androconial bouquet was
composed of alkanes (37%) and esters (14%), with syringalde-
hyde and heneicosane being the most abundant compounds
(electronic supplementarymaterial, figure S9). The androconial
composition of F1 and backcross males was very similar to
that of H. t. florencia but showed higher individual variation
(electronic supplementary material, figures S10, S11 and
table S6). Consistently, the discriminant analysis revealed a dis-
crete group formed by H. t. florencia, F1 and backcross males,
while H. m. malleti formed an independent cluster (figure 2a;
MANOVA, F1,3 = 13.347, p < 0.01). A post hoc Tukey’s test
showed that F1 and backcross males differed significantly
from H. m. malleti males (p < 0.01; in both cases) but not from
those of H. t. florencia ( p > 0.01; in both cases).

The abdominal gland bouquet of males was chemically
more diverse than that of the androconia (electronic sup-
plementary material, table S7). Alkanes, esters and lactones
were the major compounds present in the abdominal gland
bouquet of H. m. malleti and H. t. florencia. β-ocimene and
heneicosane largely dominated the abdominal gland bouquet
of H. m. malleti males, while that of H. t. florencia was mainly
composed of ethyl oleate, butyl oleate, isopropyl oleate and
(Z )-9-octadecen-13-olide (electronic supplementary material,
table S7 and figure S12). As in the androconia, the abdominal
gland bouquet of F1 and backcross males was more similar
to H. t. florencia, although some individuals had β-ocimene
(electronic supplementary material, figures S13 and S14).
The discriminant analysis revealed a discrete group com-
posed of H. t. florencia, F1 and backcross males which
differentiate from a cluster formed only by H. m. malleti
(figure 2b; MANOVA, F1,3 = 12.528, p < 0.01). A post hoc
Tukey’s test showed that F1 and backcross males differed
significantly from H. m. malleti males ( p < 0.01; in both
cases) but not from H. t. florencia males ( p > 0.01, in both
cases). Interestingly, both species and their hybrids showed
putative defensive secretions in their abdominal gland,
namely 2-sec-butyl-3-methoxypyrazine in the abdominal
gland extracts of H. t. florencia, F1 and backcrosses and 2-iso-
butyl-3-methoxypyrazine in the abdominal gland extracts of
H. m. malleti, F1 and backcrosses (electronic supplementary
material, table S7 and figure S13). These specific compounds
are known to deter predators in the wood tiger moth [61],
and in general, methoxypyrazines are compounds frequently
found in the chemical defences of aposematic insects [62–64].
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4. Discussion
Variations in sexual cues and preferences have major impli-
cations for speciation, as they can cause reproductive isolation.
The role of visual cues and visual preference in triggering repro-
ductive isolation has been well documented in animal taxa that
have diverged in the presence of gene flow [65–67]. By contrast,
while it iswidelyacknowledged that chemical signals playa role
in animal premating isolation [68,69], their role as drivers of
sympatric speciation is much less studied. Lepidoptera is the
order that has the most information on volatiles involved in
sexual recognition: more than 2000 sex pheromones have been
identified inmoths, and anadditional eight have been identified
inday flying butterflies [70–72]. The function of sex chemicals in
promoting species recognition and ensuring reproductive iso-
lation in moths has been extensively demonstrated [72], while
in butterflies, experimental evidence of such phenomena is
less abundant [10,71,73,74]. This isprobablybecause researchers
usually assume that butterflies should mainly rely on mating
systems based on visual signals suited to their diurnal habits.

We found that H. t. florencia and H. m. malleti are nearly
identical in terms of wing patterning, and altering this trait
with blackmarkers had little effect on the preference of females
for mates. This accords with our earlier observations where
experiments with wing models washed in hexane revealed
that males of H. t. florencia approached and courted models
of H. m. malleti as much as theirs [42]. These results suggest
that the wing phenotype is not the cue that maintains
species integrity between these mimetic pair. Instead, strong
mating isolation appears to be largely driven by chemical
signals. Our previous work demonstrated that females of
H. m. malleti and H. t. florencia strongly discriminated against
conspecific males that have their wing androconia experimen-
tally blocked [43]. Consistently, we found that females showed
more acceptance behaviour and less rejection behaviour
towards males perfumed with a conspecific extract relative to
those perfumed with the heterospecific extract. Intriguingly,
no matings were observed in these perfuming experiments,
which could be partly due to the rapid evaporation of the
androconial perfume applied. However, since these experi-
ments did not alter the chemicals in the abdominal gland, the
lack of mating also indicates that the sole presence of the
abdominal scent is not enough to ensure successful mating,
and the androconial scent is always needed. Even more, the
compound composition in each of these scents possibly
needs to occur in specific mixture ratios. This would agree
with recent findings in the butterfly Pieris napi, where the
synergistic processing of two wing male volatile components
in a 1 : 1 ratio is necessary for female acceptance [74]. Also, in
Drosophila, the disruption natural ratios in male cuticular
hydrocarbons led to an aversion response in females [75],
further suggesting that normal mixture ratios in the chemicals
underlying mate acceptance and preference are required.
Therefore, it is likely that the abdominal and androconial
extracts, and their specific composition, play different roles
at different stages of courtship (although this remains to
be tested).

We also found that the composition of the male chemical
bouquet of H. m. malleti and H. t. florencia is different, confirm-
ing the results previously reported in other studies that
included a much lower sample size [30]. The chemical signa-
ture of the two species is unique, not only in the androconia
but also in the genitalia. This contrasts with the general pattern
in Lepidoptera, where closely related species usually display
similar chemical signatures, especially in pheromones [70].
In particular, we identified octadecanal and β-ocimene as the
main compounds in the androconia and genitalia bouquet
of H. m. malleti, respectively. Even though octadecanal was
also present in H. t. florencia, its abundance was much lower
in this species. This agrees with recent findings, where octade-
canal was found to be abundant in males of H. m. rosina and
almost absent in those of H. c. chioneus [71]. Interestingly,
octadecanal is electro-physiologically active in Heliconius [71],
and β-ocimene is a known anti-aphrodisiac in the genus [76].
Also, the most abundant compounds in the male androconia
of H. t. florencia were syringaldehyde and heneicosane, known
to act as long-range attraction molecules in multiple insect
species [77–81]. Similarly, the male bouquet of this species also
contained phenylacetaldehyde and limonene, which act as
copulating pheromones, hormones and defensive secretions in
other Lepidoptera [78]. The marked difference in chemical
composition in the genital and wing extracts of males of
H. m. malleti and H. t. florencia may be facilitated by the fact
that these species have strong differences in larval host plant
use [40], and larval diet is a known factor that affects adult
pheromone composition in Lepidoptera [72,82].

Hybrid males (F1 and backcrosses) had fewer and less
abundant compounds in their blends compared with the par-
ental species. Interestingly, both F1s and backcrosses had little
octadecanal and some hybrid individuals even lacked it at all
( just as pure H. t. florencia males do), suggesting that the low
amount of this compound is heritable and possibly involving
few major effect loci. This agrees with findings in H. m. rosina
and H. c. chioneus that suggest a potential monogenic basis
and dominant inheritance for octadecanal production [71].
Similarly, hybrid females (F1 and backcrosses) accepted males
of H. t. florencia more readily than those of H. m. malleti, and
in some cases, we observed matings with the former species.
This again suggests that female preference could be heritable
and with a simple genetic basis. In fact, examples in orchid
bees and Drosophila suggest that the genetics of chemical
production and chemical preference have a simple genetics,
where the same or few genes are involved [83,84]. However,
our data are not enough to draw definitive conclusions on
the genetics of the production of sexual chemical cues or
female preference. To answer this question, it would be necess-
ary to test the reciprocal F1 (H. m. malletimother ×H. t. florencia
father) and backcrosses towards H. m. malleti. However, such
crosses are extremely difficult to obtain, perhaps due to intrin-
sic behavioural sterility as reported for other Lepidoptera [85].

A previous QTL analysis in crosses between H. melpomene
and H. cydno found no genetic linkage among colour pattern
and/or colour preference loci with the locus underlying the
production of octadecanal [71]. This is unexpected if chemical
cues play a major role in reproductive isolation, as theory pre-
dicts that traits under divergent selection and those that play
a role in premating isolation should be tightly linked in order
to facilitate speciation [65,86]. By contrast, in cases where natu-
ral selection promotes mimicry convergence due to secondary
introgression, thus compromising the visual recognition of con-
specific mates, reproductive isolation should weaken, possibly
leading to species collapse [31,87]. Yet the total reproductive
isolation between H. m. malleti and H. t. florencia is approxi-
mately 97% [31], implying that chemical barriers, along with
other barriers such as habitat specialization and host plant
use, are sufficient to ensure species integrity. Our hybrid
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broods suggest that both sexual chemical production and
preference for them probably have a simple genetic basis, and
if they happen to be physically linked in the genome, as
in the case of visual cues and visual preference [65], then
reproductive isolation is easily achieved and maintained.

Overall, this study corroborates the existence of differences
between male chemical signatures in a pair of closely related
and mimetic species where the wing phenotype is not a recog-
nition trait. These chemical differences are used by females to
effectively choose mates, confirming that male sex compounds
are necessary to mediate premating reproductive isolation
between H. m. malleti and H. t. florencia. Also, our results
suggest that bothmale chemical production and female prefer-
ence in Heliconius are heritable traits with a simple genetic
basis. In fact, recent studies have pinpointed candidate regions
implicated in the production of male pheromone components
in Heliconius [71]. However, to date, the genetic basis control-
ling female assortative mating behaviours remains largely
unknown (but see [88]). This study shows that sexual chemicals
are effective cues that contribute to mate recognition in day
flying butterflies, and that both sexual chemical production
and chemical preference are key components of reproductive
isolation that facilitate speciation in the face of gene flow.
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