1,817 research outputs found

    Effects of atomic diffraction on the Collective Atomic Recoil Laser

    Full text link
    We formulate a wave atom optics theory of the Collective Atomic Recoil Laser, where the atomic center-of-mass motion is treated quantum mechanically. By comparing the predictions of this theory with those of the ray atom optics theory, which treats the center-of-mass motion classically, we show that for the case of a far off-resonant pump laser the ray optics model fails to predict the linear response of the CARL when the temperature is of the order of the recoil temperature or less. This is due to the fact that in theis temperature regime one can no longer ignore the effects of matter-wave diffraction on the atomic center-of-mass motion.Comment: plain tex, 10 pages, 10 figure

    Neutrinos And Big Bang Nucleosynthesis

    Full text link
    The early universe provides a unique laboratory for probing the frontiers of particle physics in general and neutrino physics in particular. The primordial abundances of the relic nuclei produced during the first few minutes of the evolution of the Universe depend on the electron neutrinos through the charged-current weak interactions among neutrons and protons (and electrons and positrons and neutrinos), and on all flavors of neutrinos through their contributions to the total energy density which regulates the universal expansion rate. The latter contribution also plays a role in determining the spectrum of the temperature fluctuations imprinted on the Cosmic Background Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer and helium-4 as a chronometer, the predictions of BBN and the CBR are compared to observations. The successes of, as well as challenges to the standard models of particle physics and cosmology are identified. While systematic uncertainties may be the source of some of the current tensions, it could be that the data are pointing the way to new physics. In particular, BBN and the CBR are used to address the questions of whether or not the relic neutrinos were fully populated in the early universe and, to limit the magnitude of any lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129, "Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O. Botner, P. Carlson, P. O. Hulth, and T. Ohlsso

    Non dissipative decoherence of Rabi oscillations

    Get PDF
    We present a simple theoretical description of two recent experiments where damping of Rabi oscillations, which cannot be attributed to dissipative decoherence, has been observed. This is obtained considering the evolution time or the Hamiltonian as random variables and then averaging the usual unitary evolution on a properly defined, model-independent, probability distribution.Comment: 4 pages, RevTe

    Comparison of Recoil-Induced Resonances (RIR) and Collective Atomic Recoil Laser (CARL)

    Get PDF
    The theories of recoil-induced resonances (RIR) [J. Guo, P. R. Berman, B. Dubetsky and G. Grynberg, Phys. Rev. A {\bf 46}, 1426 (1992)] and the collective atomic recoil laser (CARL) [ R. Bonifacio and L. De Salvo, Nucl. Instrum. Methods A {\bf 341}, 360 (1994)] are compared. Both theories can be used to derive expressions for the gain experienced by a probe field interacting with an ensemble of two-level atoms that are simultaneously driven by a pump field. It is shown that the RIR and CARL formalisms are equivalent. Differences between the RIR and CARL arise because the theories are typically applied for different ranges of the parameters appearing in the theory. The RIR limit considered in this paper is qP0/Mωq≫1qP_{0}/M\omega_{q}\gg 1, while the CARL limit is qP0/Mωq≲1qP_{0}/M\omega_{q}\lesssim 1, where % q is the magnitude of the difference of the wave vectors of the pump and probe fields, P0P_{0} is the width of the atomic momentum distribution and % \omega_{q} is a recoil frequency. The probe gain for a probe-pump detuning equal to zero is analyzed in some detail, in order to understand how the gain arises in a system which, at first glance, might appear to have vanishing gain. Moreover, it is shown that the calculations, carried out in perturbation theory have a range of applicability beyond the recoil problem. Experimental possibilities for observing CARL are discussed.Comment: 16 pages, 1 figure. Submitted to Physical Review

    A Search for Stars of Very Low Metal Abundance. V. Photoelectric UBV Photometry of Metal-Weak Candidates from the Northern HK Survey

    Full text link
    We report photoelectric UBV data for 268 metal-poor candidates chosen from the northern HK objective-prism/interference-filter survey of Beers and colleagues. Over 40 % of the stars have been observed on more than one night, and most have at least several sets of photometric measurements. Reddening estimates, preliminary spectroscopic measurements of abundance, and type classifications are reported.Comment: To Appear in the Astronomical Journal, October 200

    ÂżHasta dĂłnde llega la eficacia escolar?

    Full text link

    Dynamical decoherence in a cavity with a large number of two-level atoms

    Full text link
    We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.Comment: 9 pages, no figures. This submission substitutes paper quant-ph/0212148 that was withdrawn. Version accepted for publication in Journal of Physics B: Atomic, Molecular & Optical Physic

    Recoil-Induced-Resonances in Nonlinear, Ground-State, Pump-Probe Spectroscopy

    Full text link
    A theory of pump-probe spectroscopy is developed in which optical fields drive two-photon Raman transitions between ground states of an ensemble of three-level Λ\Lambda atoms. Effects related to the recoil the atoms undergo as a result of their interactions with the fields are fully accounted for in this theory. The linear absorption coefficient of a weak probe field in the presence of two pump fields of arbitrary strength is calculated. For subrecoil cooled atoms, the spectrum consists of eight absorption lines and eight emission lines. In the limit that χ1≪χ2\chi_{1}\ll \chi_{2}, where χ1\chi_{1} and χ2\chi_{2} are the Rabi frequencies of the two pump fields, one recovers the absorption spectrum for a probe field interacting with an effective two-level atom in the presence of a single pump field. However when χ1≳χ2\chi_{1}\gtrsim \chi_{2}, new interference effects arise that allow one to selectively turn on and off some of these recoil induced resonances.Comment: 30 pages, 8 figures. RevTex. Submitted to Phys. Rev. A, Revised versio

    An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres I. Formation of the G-band in metal-poor dwarf stars

    Full text link
    Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that, for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 <= T_eff [K] <= 6550, 4.0 <= log g <= 4.5, -3.0 <= [Fe/H] <= -1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. The 3D corrections suggest that A(C) in CEMP stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.Comment: 19 pages, 13 figures, 4 tables. Accepted for publication in A&
    • …
    corecore