The early universe provides a unique laboratory for probing the frontiers of
particle physics in general and neutrino physics in particular. The primordial
abundances of the relic nuclei produced during the first few minutes of the
evolution of the Universe depend on the electron neutrinos through the
charged-current weak interactions among neutrons and protons (and electrons and
positrons and neutrinos), and on all flavors of neutrinos through their
contributions to the total energy density which regulates the universal
expansion rate. The latter contribution also plays a role in determining the
spectrum of the temperature fluctuations imprinted on the Cosmic Background
Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer
and helium-4 as a chronometer, the predictions of BBN and the CBR are compared
to observations. The successes of, as well as challenges to the standard models
of particle physics and cosmology are identified. While systematic
uncertainties may be the source of some of the current tensions, it could be
that the data are pointing the way to new physics. In particular, BBN and the
CBR are used to address the questions of whether or not the relic neutrinos
were fully populated in the early universe and, to limit the magnitude of any
lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129,
"Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O.
Botner, P. Carlson, P. O. Hulth, and T. Ohlsso