15 research outputs found

    Evolving Reinforcement Learning-Like Abilities for Robots

    Get PDF
    In [8] Yamauchi and Beer explored the abilities of continuous time recurrent neural networks (CTRNNs) to display reinforcement-learning like abilities. The investigated tasks were generation and learning of short bit sequences. This "learning'' came about without modifications of synaptic strengths, but simply from internal dynamics of the evolved networks. In this paper this approach will be extended to two embodied agent tasks, where simulated robots have acquire and retain "knowledge'' while moving around different mazes. The evolved controllers are analyzed and the results are discussed

    Levels of Dynamics and Adaptive Behavior in Evolutionary Neural Controllers

    Get PDF
    Two classes of dynamical recurrent neural networks, Continuous Time Recurrent Neural Networks (CTRNNs) (Yamauchi and Beer, 1994) and Plastic Neural Networks (PNNs) (Floreano and Urzelai, 2000) are compared on two behavioral tasks aimed at exploring their capabilities to display reinforcement-learning like behaviors and adaptation to unpredictable environmental changes. The networks report similar performances on both tasks, but PNNs display significantly better performance when sensory-motor re-adaptation is required after the evolutionary process. These results are discussed in the context of behavioral, biological, and computational definitions of learning

    Levels of Dynamics and Adaptive Behavior in Evolutionary Neural Controllers

    Get PDF
    Two classes of dynamical recurrent neural networks, Continuous Time Recurrent Neural Networks (CTRNNs) (Yamauchi and Beer, 1994) and Plastic Neural Networks (PNNs) (Floreano and Urzelai, 2000) are compared on two behavioral tasks aimed at exploring their capabilities to display reinforcement-learning like behaviors and adaptation to unpredictable environmental changes. The networks report similar performances on both tasks, but PNNs display significantly better performance when sensory-motor re-adaptation is required after the evolutionary process. These results are discussed in the context of behavioral, biological, and computational definitions of learning

    Evolutionary Bits'n'Spikes

    Get PDF
    We describe a model and implementation of evolutionary spiking neurons for embedded microcontrollers with few bytes of memory and very low power consumption. The approach is tested with an autonomous microrobot of less than 1 in^3 that evolves the ability to move in a small maze without human intervention and external computers. Considering the very large diffusion, small size, and low cost of embedded microcontrollers, the approach described here could find its way in several intelligent devices with sensors and/or actuators, as well as in smart credit cards

    Evolving Inborn Knowledge For Fast Adaptation in Dynamic POMDP Problems

    Full text link
    Rapid online adaptation to changing tasks is an important problem in machine learning and, recently, a focus of meta-reinforcement learning. However, reinforcement learning (RL) algorithms struggle in POMDP environments because the state of the system, essential in a RL framework, is not always visible. Additionally, hand-designed meta-RL architectures may not include suitable computational structures for specific learning problems. The evolution of online learning mechanisms, on the contrary, has the ability to incorporate learning strategies into an agent that can (i) evolve memory when required and (ii) optimize adaptation speed to specific online learning problems. In this paper, we exploit the highly adaptive nature of neuromodulated neural networks to evolve a controller that uses the latent space of an autoencoder in a POMDP. The analysis of the evolved networks reveals the ability of the proposed algorithm to acquire inborn knowledge in a variety of aspects such as the detection of cues that reveal implicit rewards, and the ability to evolve location neurons that help with navigation. The integration of inborn knowledge and online plasticity enabled fast adaptation and better performance in comparison to some non-evolutionary meta-reinforcement learning algorithms. The algorithm proved also to succeed in the 3D gaming environment Malmo Minecraft.Comment: 9 pages. Accepted as a full paper in the Genetic and Evolutionary Computation Conference (GECCO 2020

    Evolving unipolar memristor spiking neural networks

    Get PDF
    © 2015 Taylor & Francis. Neuromorphic computing – brain-like computing in hardware – typically requires myriad complimentary metal oxide semiconductor spiking neurons interconnected by a dense mesh of nanoscale plastic synapses. Memristors are frequently cited as strong synapse candidates due to their statefulness and potential for low-power implementations. To date, plentiful research has focused on the bipolar memristor synapse, which is capable of incremental weight alterations and can provide adaptive self-organisation under a Hebbian learning scheme. In this paper, we consider the unipolar memristor synapse – a device capable of non-Hebbian switching between only two states (conductive and resistive) through application of a suitable input voltage – and discuss its suitability for neuromorphic systems. A self-adaptive evolutionary process is used to autonomously find highly fit network configurations. Experimentation on two robotics tasks shows that unipolar memristor networks evolve task-solving controllers faster than both bipolar memristor networks and networks containing constant non-plastic connections whilst performing at least comparably

    Evolved motor primitives and sequences in a hierarchical recurrent neural network

    No full text
    Abstract. This study describes how complex goal-directed behavior can evolve in a hierarchically organized recurrent neural network controlling a simulated Khepera robot. Different types of dynamic structures self-organize in the lower and higher levels of a network for the purpose of achieving complex navigation tasks. The parametric bifurcation structures that appear in the lower level explain the mechanism of how behavior primitives are switched in a top-down way. In the higher level, a topologically ordered mapping of initial cell activation states to motor-primitive sequences self-organizes by utilizing the initial sensitivity characteristics of nonlinear dynamical systems. A further experiment tests the evolved controller’s adaptability to changes in its environment. The biological plausibility of the model’s essential principles is discussed.
    corecore