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Evolving Unipolar Memristor Spiking Neural Networks

David Howard, Larry Bull and Ben De Lacy Costello

Abstract— Neuromorphic computing — brainlike computing
in hardware — typically requires myriad CMOS spiking
neurons interconnected by a dense mesh of nanoscale plastic
synapses. Memristors are frequently cited as strong synapse
candidates due to their statefulness and potential for low-power
implementations. To date, plentiful research has focused on the
bipolar memristor synapse, which is capable of incremental
weight alterations and can provide adaptive self-organisation
under a Hebbian learning scheme. In this paper we consider
the Unipolar memristor synapse — a device capable of non-
Hebbian switching between only two states (conductive and
resistive) through application of a suitable input voltage— and
discuss its suitability for neuromorphic systems. A self-adaptive
evolutionary process is used to autonomously find highly fit
network configurations. Experimentation on two robotics tasks
shows that unipolar memristor networks evolve task-solving
controllers faster than both bipolar memristor networks and
networks containing constant nonplastic connections whilst
performing at least comparably.

I. I NTRODUCTION

Neuromorphic computing [20] is concerned with devel-
oping brainlike information processing, and requires the
creation of hardware neural networks of appropriate scale
together with associated learning rules. Typically, densely-
packed CMOS spiking neurons [22] communicate with each
other via voltage pulses sent along nanoscale synapses. The
memristor [6] (memory-resistor) is a two-terminal circuit
element that can change between various resistance states
in an analog manner through application of a suitable input
voltage. Memristors display statefulness (resistance changes
are chemical in nature, so persist indefinitely and require no
power to store) and a context-sensitive memory (a memris-
tors instantaneous resistance value depends on the past of
voltage activity it has experienced). Statefulness alleviates
typical nanoscale concerns regarding heat and power con-
sumption, and context-sensitive memory allows for synapse-
like information processing. Combined, these features make
memristors strong candidates for the role of synapse in
neuromorphic spiking networks.

An adaptive self-organising mechanism is required to be-
stow learning abilities to the neuromorphic network. Hebbian
learning rules [14] provide a biologically-realistic way to
alter synaptic resistance values in a context-sensitive manner,
depending on the activities of the neurons they connect to.
Conveniently, the adaptive resistance found in memristors
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closely replicates the biological plasticity observed by Hebb,
and as such the two are often paired [1], [19], [25] to allow
for adaptive learning by permitting each synapse a gradual,
analog traversal over a continuous range of resistance values.

Although much current research is devoted to the use of
this type of device (and this type of plasticity), there is in
fact a distinction to be made between two types of memristor
— the one capable of analog, Hebbian plasticity, which is
frequently called simply the “memristor”, but which may
more correctly be called the “bipolar memristor”, and the
less-discussed “unipolar memristor” [32], which shares the
statefulness and memory but switches in a binary fashion
between only two resistance states. They are interesting to
us as, when physical manufacture is considered, unipolar
memristors are much simpler to reliably create and more
durable, meaning that they are more viable candidates for
physical realisation. In this paper we simulate and analyse
unipolar memristor networks, and ascertain the suitability of
the unipolar memristor when used as an alternative to the
bipolar memristor as a synapse in spiking neural networks.

We employ a Genetic Algorithm (GA) [16] to automati-
cally discover high-performance spiking network topologies
where each synapse is a unipolar memristor. These networks
are compared to identically-evolved benchmark networks
consisting of (i) bipolar memristor synapses, and (ii) constant
(nonplastic) synapses on two simulated robotics scenarios
(one purely reactive, one requiring adaptation). Results show
that by foregoing the biological plausibility of bipolar plas-
ticity, networks comprised of homogenously-parameterised
unipolar memristors can adapt to dynamic environments
more expediently than either of the benchmark networks
without a significant degradation in other key metrics. When
coupled with the comparative ease of manufacture compared
to their bipolar counterparts, unipolar memristors are high-
lighted as a promising, although currently overlooked, route
towards the creation of physical neuromorphic architectures.

Original contributions include the introduction of such
unipolar memristor networks and an analysis of the role of
plasticity in the unipolar networks. Finally, the use of twotest
scenarios (one reactive, one dynamic) allows us to accurately
gauge the computational properties of the unipolar memristor
networks in terms of behaviour generation and adaptability,
both of which are key requirements for neuromorphic archi-
tectures.

II. M EMRISTIVE SPIKING NETWORKS

Spiking Neural Networks (SNNs) model neural activity
in the brain to varying degrees of precision. Two well-
known phenomenological implementations are the Leaky
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Integrate and Fire (LIF) model and the Spike Response
Model (SRM) [13], with the most well-known mechanistic
alternative being the Hodgkin-Huxley model [15]. A SNN
comprises a number of neurons connected by numerous
unidirectional synapses. Each neuron has a state, which is
a measure of internal excitation, and emits a voltage spike
to all forward-connected neurons if sufficiently excited. This
state is a form of memory which allows the network to solve
temporal problems.

The memristor was first theoretically characterized by [6],
and first manufactured from titanium dioxide by HP
labs [29]. This fabrication has led to numerous other groups
creating memristors from metal oxides and a variety of
materials, e.g. conductive polymers [8], metal silicides,and
crystalline oxides [7].

According to filament theory [32], both memristor types
can form internal conductive pathways calledfilaments,
which may arise due to material defects or conditions dur-
ing synthesis. Unipolar memristors form complete filaments
(Figure 1(a)), resulting in drastic changes in resistance.
Mechanistically, the unipolar memristor acts as a device
whose resistance can change between two values — the Low-
Resistance State (LRS) (Figure 1(a)) and the High-Resistance
State (HRS) (Figure 1(b)) — through application of a voltage
over some threshold. The memristor enters the LRS when
complete filaments are formed. Driving over a threshold
voltage breaks these filaments and transfers the device to the
HRS. A further voltage input of suitable magnitude reforms
these filaments and reinstates the device to the LRS. Unipolar
devices are ambivalent to the polarity of the applied voltage.

Bipolar memristors do not form complete filaments (Fig-
ure 1(b)), meaning they must instead use comparatively
weaker mechanisms such as ionic transport to alter their
resistance to any value between the minimum and maximum
resistance of the device in a continuous, analog manner. The
“classic” HP bipolar memristor can be thought of as com-
prising two regions, one of titanium dioxide, and the other
of more conductive oxygen-depleted titanium dioxide, which
are represented respectively by variable resistorsRoff and
Ron. Voltage across the device causes the oxygen vacancies
to drift, altering the position of the boundary and changing
the resistance depending on the polarity of the applied
voltage (see Figure 1(c)). Note that the unipolar memristor
also features this ionic transport; complete filament formation
is simply a stronger form of resistance change so ionic effects
are largely mitigated.

Memristive plasticity involves a bidirectional voltage spike
(a discrete or continuous waveform), which is emitted by
a sufficiently excited neuron and can be used to track the
coincidences of spikes across a synapse. Two voltage spikes
(one from each neuron that the synapse connects) arriving at
the synapse in a short time window causes a coincidence
event to take place. A single coincidence event causes a
bipolar memristor to change its resistance by a small amount
under a Hebbian learning scheme (which when used in
the context of computer science is more correctly termed
Spike Time Dependent Plasticity, or STDP) [2]. This scheme

means that the order of spike arrival at a synapse affects
the polarity of the voltage experienced by the device and
thus the direction of synaptic weight change. Briefly, if the
presynaptic neuron fires first it can be said to have caused
the postsynaptic neuron to fire and the synaptic weight
is strengthened (the classic Hebb rule). To prevent weight
saturation the synaptic weight is weakened if the postsynaptic
neuron fires first as such causality cannot be implied (the
anti-Hebb rule). Although we focus on unsupervised Hebbian
learning, we note that supervised learning approaches also
exist for memristive neural networks [4].

Unipolar memristors are less sensitive to voltage than
bipolar memristors, and as such require multiple coincidence
events to flip between their two resistance states. Unipo-
lar memristors are ambivalent to the polarity of incoming
voltage, so there is no notion of spike order affecting
weight change and as such the scheme cannot be considered
Hebbian. In more detail, the unipolar synapse switches its
resistance after a number of repeated coincidence events
within a given timeframe, but is not sensitive to which neuron
fires first. A bipolar synapse requires only one coincidence
event to switch, but the direction of weight change depends
on which neuron (presynaptic or postsynaptic) first first,
and multiple repeated coincidences in a given direction are
required to affect a behavioural change in the network. Note
that unipolar plasticity removes the element of biologicalre-
alism, deriving a switching mechanism more from electronic
circuitry than neural circuitry, but nevertheless implements
plasticity and allows for adaptivity.

In practice, the bistable nature of the unipolar memristor
synapse means that the network forgoes traditional plastic
means of behaviour generation and alteration. Typical bipolar
plasticity involves either sensory inputs of internal neu-
ron/synapse states are used to drive some “trigger” neurons
into firing, which alters the plasticity of some synapses and
drives the network into a different region of attractor space,
potentially changing the firing rate at the output neurons [17].
Unipolar memristors must set up weight oscillators in the
network, so that coordinated synaptic weight switching leads
to a suitable amount of spikes being received by the output
neurons to generate an appropriate action. Again, sensory
inputs or internal network states can change the switching
dynamics of the weight oscillator (e.g., the amount of time
between a switch event for each synapse in the oscillator),
leading to changes in behaviour.

Due to these non-standard network dynamics, the hand-
design of such networks is far from intuitive. It should
also be noted that the eventual aim of this work is in au-
tomatically creating neuromorphic architectures for specific
tasks, which implies some measure of self-organised learning
and the freedom to discover suitable networks per-task.
Given these considerations, we have elected to use a genetic
algorithm to automatically explore the space of network
topologies. Related work on neuro-evolution includes [10],
who survey various methods for evolving both weights and
architectures. [21] describe the evolution of networks for
robotics tasks. Combined with plasticity, neuro-evolutionary
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Fig. 1. Showing the differences in resistance change with (a, b) unipolar and (c) bipolar memristors. Unipolar memristors
form complete filaments, allowing electrons to travel largely unimpeded through the substrate and resulting in a very
low resistance when formed (a), but a very high resistance when broken (b). The bipolar memristor (which could also be
represented in (b)) does not form these filaments and so relies instead on ionic conductivity (c). The device is abstractly
modelled as two variable resistorsRoff andRon; the boundary between the resistors represents the movement of
oxygen vacancies from electrode to electrode and changes asa function of applied voltage.

controllers have shown increased performance compared
to similarly-evolved nonplastic-synapse networks [26], [31].
Related research on neuromorphic memristive networks in-
cludes the use of conductive polymers [9] and crossbar
implementations [18].

Numerous groups have previously used bipolar memristors
as plastic synapses [1], [19], [25], seeking to exploit the
similarities between analog resistance alteration and Hebbian
learning (e.g., [34]). To our knowledge, no previous work has
considered the use of unipolar memristor synapses to fulfil
the same role. Examples of unipolar memristors are confined
to binary operation for traditional logic [30], although neural
implementations exist for non-memristor binary switching
devices [33]. Although we note that spiking unipolar mem-
ristor networks have not been studied in detail before, similar
studies give cause for optimism. A string of publications
from the group of Stefano Fusi focuses on the how the
number of available synaptic resistance states affects memory
and learning in neural networks e.g., [11], [12]. In particular,
they conclude that binary synapses (similar to our unipolar
memristors) allow for learning given certain prerequisites are
met [5]. [28] uses synaptic weight saturation that is sensitive
to initially-noisy synaptic states to a similar effect.

A. Motivation for the Focus on Unipolar Memristors

We focus on unipolar memristors because they are easier
to implement in reality than bipolar memristors — using
binary rather than analog resistance states means that the
devices are less reliant on precise nanoscale fabrication,
which can be compromised by device variations that are
currently an intrinsic part of the nanoscale manufacturing
process. In other words, the device only needs to reliably
switch between two resistance states, rather than follow a

specific resistance profile to a given degree of accuracy. This
benefit extends to the testing of physical networks — “does
it switch?” is an easier question to answer than “does it
follow this continuous resistance profile accurately enough?”,
and requires less time to test. Similar benefits have been
reported by [5] — reducing the amount of device variance
is highlighted as a route to a simpler manufacturing process,
e.g. in the context of Very Large-Scale Integration (VLSI).

During operation, unipolar memristors require multiple
spike conincidence events to force a single state change;
it follows that they undergo fewer total state changes and
therefore may be more long-lasting. A single resistance
change can perturb the network state more than is possible in
bipolar networks, potentially leading to simpler implementa-
tions requiring reduced spike traffic (and hence lower power
requirements). Simpler network activity through a lower-
dimensional attractor space may permit a more tractable anal-
ysis and understanding of candidate networks. In summary,
they are simpler to reliably and repeatedly create, and may
give rise to lower-power and simpler implementations than
bipolar memristors.

III. TASKS

Two robotics tasks are used to evaluate the unipolar
synapse networks in the context of the other network types.
The first — phototaxis — is purely reactive, and designed to
illustrate the quality of behaviour that can be elicited from
each network type. The second task, performed in a T-maze,
shows the speed of adaptation to a dynamically-changing
environment.
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Fig. 2. (i) The phototaxis environment. The agent (circle) begins randomly positioned in the lower-left (checkered triangle) and must reach a light source
in the upper-right, circumnavigating the central obstacle. (ii) The T-maze. The robot (circle) begins randomly positioned in the start zone (checkered box)
and must travel to reward zones R1 or R2. A light source is located in the top-centre. Both figures are to scale.

A. Task I: Phototaxis

The phototaxis task is classed as reactive as it does not
require memory or adaptation to solve. In the phototaxis
environment, a differential drive robot is randomly located
within a walled arena, with boundaries at -1 and 1 in both
x and y. A three-dimensional box, which the robot must
navigate around, is placed centrally in the arena, with vertices
at (x = −0.4, y = −0.4), (−0.4, 0.4), (0.4, 0.4), and (0.4,
−0.4). A 15 Watt bulb is placed at the top-right hand corner
of the arena (x = 1, y = 1). The environment is shown in
Figure 2(a).

The robot initially faces North, with an initial start position
randomly generated but constrainedx + y < −1.5. The
robot must perform phototaxis — light-seeking behaviour
— and receives fitness proportional to the closest distance
it achieves to the light source. When the robot reaches the
goal state (wherex + y > 1.6), the responsible controller
receives a constant fitness bonus of 2500, which is added to
the fitness functionf (f > 0) outlined in equation ( 1). The
denominator in the equation expresses the difference between
the position of the goal state (1.6) and the current robot
position (xpos andypos), andst is the number of robot steps
taken to reach the goal state. A simple step-based fitness
could have been used, but our fitness function allows for a
gradual improvement of behaviour that does not require the
goal state to be found to begin optimisation.

The fitness of a controller is calculated at the end of every
robot step, with the highest attained value off during the
trial kept as the fitness value for that controller. Optimal
performance givesf = 11800, which corresponds to 700
robot steps from start to goal state with no collisions.

f = (1/(1.6− (|xpos + ypos|)))× 1000− st (1)

B. Task II: Adaptation

A dynamic T-maze [3], [27] scenario is used to measure
the adaptation capabilities of the synapses. The T-maze is an
enclosed arena with coordinates ranging from [-1,1] in both
x and y directions, with walls placed to represent a “T”
(Figure 2(b)). Reward zones R1 and R2 are situated at the
end of the left and right arms respectively. A 15 Watt bulb is
placed at the top-centre of the arena (x = 0.5, y = 1) and is
used to indirectly feed position information to the network,
as well as enabling it to produce any action from anywhere
in the arena.

At the start of a trial, a differential-drive robot initially
faces North, randomly positioned in the start zone at the
bottom of the “T” (−0.4 > x < 0.4, y < −0.4). The agent
must navigate to the initial reward zone R1. The trial is split
into two phases, each of which is 4000 robot steps long for a
maximum trial length of 8000 steps. Phase 1, similarly to the
first task, evolves controllers that can navigate from the start
zone to R1. Arriving in R1 resets the robot in the start zone
and commences phase 2. Any controller that reaches R1 is
immediately retested 5 times to ensure that the pathfinding
is stable.

In phase 2, the adaptation of the network is measured by
switching the reward zone to R2. To give the robot memory
of phase 1, membrane potentials and synaptic weights are
not reset during this process. By measuring the number of
generations that each network type takes to adjust to the new
goal position, we quantify how quickly the network can adapt
it’s behaviour to match the dynamic reward zone. Again, 5
retests are carried out to ascertain the stability of the solution.

The aim is to measure the length of adaptation, encapsu-
lated in the “solved” generation of the network. The fitness
function,f , is simply the total number of robot steps required
to solve the trial (equation (2) — lower fitness is better). A
controller that cannot locate R1 receives maximum fitness
(8000) for the trial. A controller that locates R1 but cannot



subsequently adapt to R2 receives maximum fitness for R2
(4000), plus however many robot steps it took to locate
R1. Fitness measures quality of pathfinding, and ensures
that the best networks optimise towards useful goal-seeking
behaviour.

f = st (2)

C. Experimental Procedure

At the start of each experiment, 100 spiking networks
are randomly generated. The synapse type used varies per
experiment, being either a unipolar memristor, a bipolar
memristor, or a constant connection. Each network is then
evaluated on the task over a maximum of 8000 robot steps.
Each robot step involves the network processing its sensory
input for a number of processing steps, after which the spike
trains generated at the output nodes are used to select an
action. The robot executes the action, concluding the robot
step, and recieves the next sensory input as the first part of the
subsequent robot step. After a trial (which ends either with
success or timeout), each controller is assigned a fitness. A
genetic algorithm then optimises the population of networks
for a task-dependent number of generations.

IV. SPIKING CONTROLLERS

Leaky Integrate and Fire [13] networks are used as spik-
ing controllers. Three layers of neurons (input, hidden and
output) have sizes of 6, 9 and 2 respectively. On network
creation, the hidden layer is populated with 9 hidden layer
neurons, whose types are intitially excitatory (transmit volt-
agesV≥ 0) with P=0.5, otherwise they are inhibitory (V <0).
Each connection has a weightw (all weights constrained [0-
1]). Each possible connection site is initially likely to have
a connection with P=0.5.

During activation, stimulation by incoming voltage altersa
neurons internal statem, m > 0, which by default decreases
over time. Surpassing a thresholdmθ causes a spike to
be transmitted to all postsynaptic neurons. The amount
of voltage sent is equal to the weight of the connection,
multiplied by -1 if sent from an inhibitory neuron. The state
of a neuron at processing stept+1 is given in equation 3;
equation 4 shows the reset formula.m(t) is the neuron state
at processing stept, I is the scaled state input,a is an
excitation constant andb is the leak constant. Immediately
after spiking, the neuron resets its state toc following
equation 4. A spike sent between two hidden layer neurons is
receivedn (n > 0) processing steps after it is sent, wheren is
the number of neurons spatially between the sending neuron
and receiving neuron in the layer. This implements a weak
form of spatial ordering to the networks, without explicitly
placing the networks on a virtual substrate. Parameters are
a = 0.3, b = 0.05, c = 0.0, mθ = 0.6

m(t+ 1) = m(t) + (I + a− bm(t)) (3)

If (m(t) > mθ) m(t) = c (4)

Our bidirectional voltage spikes are discrete-time stepwise
waveforms, matching the discrete-time operation of the
SNNs. Each neuron in the network is augmented with a
“last spike time” variableLS, which represents voltage
buildup at the synapse and is initially 0. When a neuron
spikes, this value is set to an experimentally-determined
positive number, in this case 3. At the end of each of the
21 procesing steps that make up a single robot step, each
memristor synapse is analysed by summating theLS values
of its presynaptic and postsynaptic neurons — any value
greater than a thresholdθLS=4 is said to have caused a
coincidence event at the synapse. EachLS value is then
decreased by 1 to a minimum of 0, creating a discrete
stepwise waveform through time, see Figure 4(a).

A. Controller Integration

Both experiments use the same differential drive robot
with 3 active light sensors and 3 active distance sensors
shown at positions 0, 2, and 5 in Figure 3(b). Random-
uniform sensory noise in included –±2% for IR sensors
and ±10% for light sensors. To prevent the robot from
becoming stuck in the environment, two bump sensors are
used (see Figure 3(b) for placement) — activating either
causes the robot to immediately reverse 10cm (an effective
penalty of 10 robot steps spent reversing).

For each robot step (64ms in simulation time), the robot
samples the six sensors: the six-dimensional input vector
is then scaled so that the entire sensor range falls within
[0,1], and is used asI in equation (4). The network is then
run for 21 processing steps — experimentally determined to
allow the bipolar synapses enough time to change synaptic
plasticity to affect useful behaviour generation — and the
spike trains at the output neurons discretised as having either
high or low activation to generate an action (high activation
if more than half of the 21 processing steps generated a
spike at the neuron,low otherwise). Three discrete actions
are used to enforce more distinct changes in network activity
and to encourage more differentiation between the activityof
the different synapse types. Actions areforward, (maximum
movement on both wheels,high activation of both output
neurons) and continuous turns to both theleft (highactivation
on the first output neuron,low on the second) andright (low
activation on the first output neuron,high on the second) —
caused by halving the left/right motor outputs respectively.

B. Synapse Types

In this section we describe our implementation of the
three synapse types used in the experiment. Both memristor
synapses rely on the concept of a “coincidence event”, which
is defined as two spikes arriving at the synapse at consecutive
processing steps. Theunipolar memristor synapse has
parametersSn, which represents the sensitivity of the device
to voltage buildup (in the form of repeated coincidence
events), andSc, which tracks the number of consecutive
coincidence events the synapse has experienced. All synapses
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Fig. 3. (a) A typical spiking network architecture. The top 3input neurons receive light sensor activations, the bottom
3 receive IR sensor activiations, and spike trains generated at the two output neurons are used for action calculation.
In the hidden layer, green/light neurons denote excitatoryneurons and blue/dark neurons signify inhibitory neurons.(b)
The differential drive robot used in both experiments. There are 8 sensor mounting positions (labelled 0-7). In our setup,
three light sensors and 3 IR sensors share positions 0, 2, and5 and form the network input. The other numbers show
unused sensor positions. Two bump sensors, B1 and B2, are shown attached at 45 degree angles to the front-left and
front-right of the robot.

are initially in the Low Resistance State (w = 0.9). This is an
arbitrary selection, performance is unaffected if the networks
begin in the HRS. Starting in the HRS would just start the
network in a different stage of its weight oscillator, whichis
initially determined by the initial network topology, whilst
preserving the coincidences of weight switches which are
required to generate the output action.

At each processing step every synapse is checked, incre-
menting Sc if a coincidence event occurs at the synapse
and decrementingSc if no coincidence event occurs at
that processing step. IfSc=Sn (Figure 4(a)), the unipolar
memristor switches to the HRS (w = 0.1) if it was pre-
viously in the LRS, or the LRS if it was previously in
the HRS.Sc is reset to 0. The device can switch between
these states multiple times per trial. Due to the requirement
of multiple consecutive coincidence events per switch, the
actual frequency of synapse alteration is lower than that seen
in the bipolar networks. Note that switching between two
resistance states, maximally resistive and minimally resistive,
likens the unipolar plasticity mechanism to network-wide
feature selection, rather than online weight adaptation aswith
traditional Hebbian plasticity schemes.

Initial experimentation (excluded for the sake of brevity)
performed a sensitivity analysis on theSn parameter — no
statistically significant differences were observed between
values of 2, 4, and 6. In this work we selectSn=4 as a
compromise between switching speed and potential device
longetivity in hardware implementations.

We use a generalised model of thebipolar memristor
synapse— as previously noted, memristor materials and
fabrication techniques are highly varied, and similar variance

is seen in the plastic behaviour of the synapses. We elect
to use a linear model as this provides the most bias-free
comparison, whilst still providing incremental resistance
changes. This model is competitive with real-world mem-
ristor models [17]. Bipolar memristor connection weights
are initially 0.5. Bipolar memristors have an effectiveSn

of 1 (Figure 4(a)), so every coincidence event causes a
change in synaptic weight by∆w=0.001, meaning 1000
consecutive Hebbian events will take the synapse from
maximally resistive to minimally resistive. Weight increases
if the postsynaptic neuron has the highestLS value, and
decreases if the presynapticLS is higher, in other words
the bipolar memristor is sensitive to the polarity of applied
voltage.

The constant synapse is non-plastic (essentially a resis-
tor). The resistance of the connection is initialised random-
uniformly in the range [0,1] and may be altered during
application of the GA, but is constant during a trial. The
constant connection is used as a baseline that shows the
effects of having no plasticity in the network. It should
be noted that all networks have memory (in the form of
neuron membrane potentials), but only the plastic unipolar
and bipolar synapse networks have the additional freedom to
adapt their connection weights online.

V. GENETIC ALGORITHM

In our steady-state GA, two child networks are created per
generation. Two parents are selected via fitness-proportionate
selection on the 100 population networks, and their genomes
copied to two child networks and probabilistically mutated.
Crossover is omitted — sufficient network space exploration
is obtained via a combination of weight and topology mu-
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Fig. 4. Showing a spike coincidence event for both memristortypes. A presynaptic voltage spike is received at processing
step t-1, with a postsynaptic voltage spike at processing stept (a “coincidence event”). For the unipolar memristor (a)
multiple subsequent events (l.h.sSn = 3, r.h.sSn = 4) are required to push the voltage past a threshold, causing a
switch. Dotted lines show the derived voltage threshold. Voltage spike values are decremented by one per subsequent
processing step. (b) A single event allows the voltage to surpassθLS , decresing the resistance of the bipolar memristor
by a smaller amount.

tations; a view that is reinforced in the literature [24]. The
networks are then trialled on the test problem and assigned
a fitness before being added to the population. Finally, the
two worst-fitness networks are deleted from the population.
Each network has its own self-adaptive mutation rates, which
are initially seeded uniform-randomly in the range [0,0.5]
and mutated as with an Evolution Strategy [23] as they are
passed from parent to child following equation (5).

µ→ µ expN(0,1) (5)

This approach is adopted as it is envisaged that efficient
search of weights and neurons will require different rates,
e.g., adding a neuron is likely to impact a network more
than changing a connection weight, so less neuron addition
events than connection weight change events are likely to
be desirable. Self-adaptation is particularly relevant for the
application area of neuromorphic computing — brainlike
systems must be able to autonomously adapt to a changing
environment and adjust their learning rates accordingly.

The genome of each network comprises a variable-length
vector of connections and a variable-length vector of neu-
rons, plus a number of mutation rates. Different parameters
govern the mutation rates of connection weights (µ), con-
nection addition/removal (τ ), and neuron addition/removal
(ω). For each comparison to one of these rates a uniform-
random number is generated; if it is lower than the rate,
the variable is said to besatisfiedat that allelle. During GA
application, for each constant connection, satisfaction of µ
alters the weight by±0-0.1. Memristive synapses cannot be
mutated from their initial weights of 0.9 for unipolar and
0.5 for bipolar, forcing those networks to use plasticity to
perform well. Each possible connection site in the network
is traversed and, on satisfaction ofτ , either a new connection
is added if the site is vacant, or the pre-existing connection
at that site is removed.ω is checked once, and equiprobably
adds or removes a neuron from the hidden layer (inserted at

a random position) if satisfied. New neurons are randomly
assigned a type, and each connection site on a new neuron
has a 50% chance of having a connection. New constant
connections are randomly weighted between 0 and 1.

VI. EXPERIMENTATION

We test the three synapse types (unipolar, bipolar, con-
stant) on each environment for 30 experimental repeats, using
the averages to create the statistical analysis given below.
Each phototaxis experiment is run for 1000 generations,
and each T-maze experiment for 500 generations. Two-
tailed T-tests are used to asses statistical significance, with
significance at P<0.05. As well as fitness, we also track
the first generation in which each population produces a
controller that solves the problem, which we term “success”.

The two environments test different aspects of the com-
putational abilities of the synapses. In both environments,
fitness represents the quality of the pathfinding behaviour.
In the phototaxis task, “success” straightforwardly measures
the number of generations to generate a controller that
sucessfully reaches the goal state. In the T-maze, “success”
measures the speed at which the controllers can alter their
behaviours in response to the change in goal state position,
an indicator of adaptivity.

In both cases, we wish to find differences that strengthen
our position, i.e., that the unipolar memristors are a viable
alternative to bipolar memristors. These tasks allow us to an-
swer important questions regarding the power of the unipolar
plasticity mechanism — does the plasticity permit sufficient
adaptivity to solve the problem? Does the discontinuous
switching behaviour allow the evolutionary process to set up
useful attractors more expediently? What are the benefits and
drawbacks in terms of controller performance and network
composition? In the case of the Tmaze, is the unipolar
networks memory ability impacted by the binary nature of
the synapse?



A. Results I: Phototaxis

Unipolar memristor networks are shown to have better
final best fitness than the other two network types (Table I).
Figure 5(a) shows that unipolar networks have a higher
initial fitness (≈10000) then the comparative network types
(constant≈4000, bipolar≈8500), indicating some passable
unipolar controllers in the initial population. This is likely
because of the “constrained flexibility” afforded to unipolar
networks — plastic online behaviour but a relatively simple
attractor space that has vastly fewer dimensions than that
of the bipolar networks. This result highlights the role of
switching plasticity in generating high quality pathfinding
behaviour in terms of being able to generate heterogenous
action sequences (a single switch can perturb network output
enough to change the action, and the switching nature of
unipolar plasticity allows the synapse to repeatedly switch on
and off to generate heterogenous action sequences). Follow-
ing a period of low-performing controllers in generations≈0-
400, constant connection networks undergo a rapid fitness
improvement from generations≈400-500. A stable plateau
occurs for all network types at≈500 generations.

Both plastic networks have the ability to search the be-
haviour space online as well as offline, which is reflected in
their “solved” generation values being statistically superior
to constant networks (Table I). As the constant networks
must search entirely offline via the GA, they take longer
to develop the required behaviour (avg. 77.6 generations to
solve, compared to 0.76 for unipolar and 14.7 for bipolar).
Additionally, the unipolar networks solve statistically faster
than the bipolar networks. In concordance with the analysis
of Figures 5(a)-(c) above, these results show that although
plasticity is beneficial in general to the evolutionary process,
the more gradual Hebbian plasticity used by the bipolar
networks results in a larger search space than that of the
unipolar networks, resulting in slower convergence.

This notion is echoed in results for average fitness (Ta-
ble I). Constant networks have statistically better final aver-
age fitness than bipolar networks — bipolar synapses have
a more complex attractor space which leads to more fitness
variance in the final population as full convergence is not
achieved within the generation limit. Although the population
of constant networks initially struggles to achieve uniformly
high fitness values due to a lack of behavioural flexibility
in the networks (large standard error and low mean in
Figure 5(b) between generations 200 and 600), it eventually
converges due to having a simpler search space. Unipolar
and bipolar synapses are seen to approximately equal each
other, with much lower standard error then the constant
connection between generations≈200-600. We note that
the final fitness order of the synapses (constant, unipolar,
bipolar) is also the synapse complexity order, indicating that
population convergence is related to the compexity of the
network behaviour space that the GA has to optimise in.

Average connected hidden layer nodes (Figure 5(c)) do
not vary significantly between the network types. We note
that the number of neurons in the constant networks jumps

from ≈16.9 to≈17.1 during generations≈400-500, with a
corresponding increase in average best fitness over the same
period (Figure 5(a)). Connectivity (Figure 5 does not vary
significantly between network types, with bipolar networks
in particular displaying a large amount of standard error
throughout the generations. As the synapse itself is more
variable, larger subset of connectivity maps (with varying
amounts of connections) can provide the same types of
behaviour.

Self-adaptive mutation parameters (Figure 6, Table II)
do not statistically differ between the synapse types, but
are all statistically different for different values within a
synapse type. This shows some context-sensitivity as the
parameters automatically find suitable values to allow for
the successful evolution of succesful networks. In particular,
Figure 6(c) shows a smoother profile and faster convergence
for τ (the rate of connection selection) for unipolar and
bipolar networks compared to constant networks. We note
that the higher rate for constant networks, and specifically
the increase inτ from generations≈400-500 permits more
search and corresponds to the jump in fitness evidenced in
Figure 5(a). If nothing else, this demonstrates a very “direct”
example of how self-adaptive search rates are used to drive
network exploration to find fitter solutions.

B. Results II: Tmaze

Table III shows that the unipolar memristor networks are
able to find solutions to the test problems in significantly
fewer generations than both the bipolar memristor and con-
stant connection networks. The unipolar memristors can only
be in two states, and as such the possible network attractor
space is significantly more constrained during a trial than
that of the bipolar network. As the GA is responsible for
setting up useful network activity — attractors that produce
pathfinding behaviour — the relationship between topology
and in-trial behaviour can be more expediently explored. The
plasticity provided by the unipolar network is still useful
for behaviour generation, hence the significant speedup over
constant connection networks. The role of plasticity will be
explored further in Section VI-C.

Best and average fitness values (Table III) do not vary
significantly between the network types. This indicates that
the unipolar memristor can generate competitive pathfinding
behaviour in addition to adapting significantly faster to the
dynamic T-maze. Figure 7(a) shows the best fitness for
constant networks always lagging behind those of the other
network types, and shows that the final order is the same
as the order of synapse complexity. The more homogeneous
starting fitness values (compare Figure 5(a)) are due to the
allocation of fitness in the networks, which receive a value
of 8000 if neither reward zone is reached, showing that none
of the network types contain even partial solutions in their
initial populations. Average fitness (Figure 7(b)) shows that
unipolar networks gain a fitness advantage in the first≈200
generations which is ceded in the final 200 generations.

In terms of topology (the last two columns of Table III),
the numbers of connected hidden layer nodes (Figure 7(c))



TABLE I

PHOTOTAXIS AVERAGES AND STANDARD DEVIATIONS FOR CONTROLLERPARAMETERS FOR THE THREE SYNAPSE TYPES. SYMBOLS INDICATE THE

VALUE IS STATISTICALLY (P<0.05)BETTER THAN o = UNIPOLAR † = BIPOLAR, * = CONSTANT.

Best fit Avg fit Gens. to solve Nodes Connectivity
Unipolar 11718†*(186) 11362 (452) 0.26†*(1.28) 16.9 (0.4) 51.75 (4.47)
Bipolar 11363 (398) 11058 (728) 14.7 *(32.5) 16.89(0.54) 51.06 (4.06)
Constant 11420 (423) 11402† (277) 77.6 (130.0) 17.10 (0.7) 51.24 (3.58)

(a) (b)

(c) (d)

Fig. 5. Phototaxis mean (a) best fitness (b) avg. fitness (c) hidden layer nodes (d) percentage connectivity for unipolar,
bipolar, and constant synapse networks. Bars denote standard error.

TABLE II

PHOTOTAXIS AVERAGES AND STANDARD DEVIATIONS FOR MUTATION PARAMETERS FOR THE THREE SYNAPSE TYPES. SYMBOLS INDICATE THE

VALUE IS STATISTICALLY (P<0.05)HIGHER THAN o = UNIPOLAR † = BIPOLAR, * = CONSTANT.

µ ψ ω τ
Unipolar NA 0.065 (0.03) 0.092 (0.03) 0.01 (0.01)
Bipolar NA 0.052 (0.02) 0.135 (0.07) 0.01 (0.01)
Constant 0.018 (0.01) 0.056 (0.03) 0.122 (0.09) 0.011 (0.01)



(a) (b) (c)

Fig. 6. Phototaxis mean (a) node addition/removal event rateψ (b) node addition rateω (c) connection addition/removal
rate τ for unipolar, bipolar, and constant synapse networks.

TABLE III

T-MAZE AVERAGES AND STANDARD DEVIATIONS FOR CONTROLLER PARAMETERS FOR THE THREE SYNAPSE TYPES. SYMBOLS INDICATE THE VALUE

IS STATISTICALLY (P<0.05)BETTER THAN o = UNIPOLAR † = BIPOLAR, * = CONSTANT.

Best fit Avg fit Gens. to solve Nodes Connectivity
Unipolar 1602.5 (422) 3115.0 (631) 12.47†*(10.7) 17.01 (0.62) 52.98 (3.7)
Bipolar 1368.3 (806) 2679.6 (966) 47.93 (70.8) 17.07 (0.56)51.7 (5.98)
Constant 1671.6 (656) 2837.1 (1284) 27.73 (38.9) 16.9 (0.69) 52.38 (4.32)

and connections (Figure 7(d)) do not vary significantly
between the three network types. We note that the standard
error is very high for the number of enabled connections;
this variance is the reason that no statictical significanceis
observed.

Self-adaptive parameters (Figure 8, Table IV) are again
shown to be context-sensitive. For the same network type,
the parameters are statistically different from each other
(compare Figure 6, Table II. Across the networks,ψ (rate
of node addition/removal events) was statistically higherin
unipolar networks than either bipolar or constant networks.
τ (rate of connection addition/removal) has statistically
higher in unipolar networks (avg. 0.049) than in constant
networks (avg. 0.024) — Table IV. Unipolar networks
appear to require more genetic search of connection space
in this task.

C. Synaptic Plasticity

Plasticity was seen to effect both key indicators of con-
troller performance: fitness and the number of generations
taken to “solve” the task. For fitness, plasticity is used as
a way of flexibly generating the required action from an
arbitrary sequence of input states. Action sequences are seen
to be more heterogeneous in the unipolar case as a single
switch can cause a large peturbation in network activity, with
constant connections being the most homogeneous in this
regard. For the number of generations to solve, plasticity
allows some degree of behavioural exploration to take place
online, removing the onus from the GA and increasing
adaptivity.

Unipolar networks used the rapid-switching ability of the
synapse in two main ways: (i) to perform online “connection
selection” e.g. to switch a synapse to a given state once

and leave it there, and (ii) varying the connectivity map of
the network multiple times during a trial to create weight
oscillators in the network, whereby the firing on the neurons
and switching of the synapses synchronises through time
to generate appropriate output actions from a subgroup of
neurons.

It was initially thought that binary nature of unipolar
resistance switching would lead to “twitchy” controller
behaviour. Some of the less fit/early generation unipolar
networks showed noticable oscillations in path generation,
but later, fitter networks were shown to avoid this problem
by synchronising switching between two synapses to the
same neuron, e.g. where one is in the LRS and the other is
in the HRS simulataneously, the receiving neuron receives
a constant input of 0.1 + 0.9 / 2 = 0.5. By switching at
the same time, this constant input can be preserved, and
used to stabilise the network making behaviour generation
easier. In other words, the quality of generated paths is not
significantly impeded by the simpler binary switching nature
of the synapse when compared to bipolar memristors.

Figure 9 shows how plasticity gives rise to fast adaptation
in the T-maze environment. When comparing the best
controller for each synapse type, it is shown that unipolar
plasticity allows for a more expedient search of a larger
immediate behaviour space, leading to solving the problem
more quickly. On the other hand, the constant networks
have to perform all of their behaviour exploration via GA
operation, and so react more slowly. Both constant and
bipolar networks initially struggle to locate the second
reward zone as their behavioural exploration is more
constrained than the unipolar networks.

Figure 10(a) shows the average synaptic weight in the



(a) (b)

(c) (d)

Fig. 7. T-maze mean (a) best fitness (b) avg. fitness (c) hiddenlayer nodes (d) percentage connectivity for unipolar,
bipolar, and constant synapse networks. Bars denote standard error.

TABLE IV

T-MAZE AVERAGES AND STANDARD DEVIATIONS FOR MUTATION PARAMETERS FOR THE THREE SYNAPSE TYPES. SYMBOLS INDICATE THE VALUE IS

STATISTICALLY (P<0.05)HIGHER THAN o = UNIPOLAR † = BIPOLAR, * = CONSTANT.

µ ψ ω τ
Unipolar NA 0.11†*(0.03) 0.358 (0.18) 0.049 *(0.04)
Bipolar NA 0.09 (0.03) 0.315 (0.17) 0.04 (0.03)
Constant 0.044 (0.03) 0.074 (0.04) 0.33 (0.22) 0.033 (0.02)

best network of each memristor type during the first 900
robot steps of activation in the T-maze. It is immediately
obvious that the networks internally function differently—
average weight is much smoother in the bipolar case (avg.
weight 0.528), whereas the unipolar synapses are much
more distcontinuous (avg. weight 0.629). In contrast, the
total number of synaptic weight changes (Figure 10(b))
over the same time period (67968 total for unipolar, 75478
total for bipolar) display a smoother profile in the unipolar
case. Fewer total switches in the unipolar case indicates
that physical unipolar networks will be more long-lasting

as the chemical mechanism is less likely to wear down or
break (given that a unipolar switch is no more damaging
to the device than a bipolar switch). Robot steps 400-525
correspond approximately to the time where the network
changes from finding R1 to finding R2.

In the bipolar case, the increased activity in this period
shows that the network is reconfiguring to produce the
required behaviour. Network stability is achieved throughei-
ther spikes being sent by two neurons at the same processing
step (meaning no synaptic change occurs), saturation of a
synapse to a minimum/maximum (after which it is stable),



(a) (b) (c)

Fig. 8. T-maze mean (a) node addition/removal event rateψ (b) node addition rateω (c) connection addition/removal
rate τ for unipolar, bipolar, and constant synapse networks.

(a) (b) (c)

Fig. 9. Showing adaptation in the T-maze environment. For the best controller of each synapse type, (a) shows the final
path for that controller in finding R1 before the reward zone is switched to R2. Note that all paths are approximately
equally good. (b) 15 generations after the reward zone switch, the best unipolar network uses online plasticity adapted
to the new reward zone. Binary switching allows a diverse range of behaviours to be explored online, reducing the
number of generations required to adapt. The bipolar memristor similarly uses online adaptation to search a behavioural
repertoire, but the gradual analog plasticity variation means that the potential behaviours are less diverse than in the
unipolar case. The constant connection can only adapt through GA application, and as such it’s best path is similar to
the final path for finding R1. The best controllers in this caseare those that come closest to finding R2. (c) After 50
generations, all controllers have adapted to the new environment. Paths are: unipolar (black solid line), bipolar (blue
dotted line), and constant (red dashed line).

(a) (b)

Fig. 10. For the best network of each memristor type in the T-maze, (a) average synapse weight and (b) average number
of total synaptic weight changes, during network activation. Such results are typical of each memristor type and similar
between experiments.



or repeated pairs of positive/negative coincidence events. To
change actions, typically, a “trigger” neuron drives a certain
hidden-to-outputsynapse to increase its weight in response
to a change in input neuron firing (frequently) or internal
network state (rarely), increasing the efficacy of spikes sent
along that synapse and thus the firing frequency of the
postsynaptic output neuron). Many coincidence events are
required due to the more gradual nature of the weight change.
We note that such changes are more stable in the bipolar
case, due to the limited effect that a synapse has on network
activity in a short period of time. Similar results are reported
by [17].

The unipolar networks are based on the concept of setting
up “weight oscillators” to create a context-sensitive dynamic
connectivity map through time. Unlike the bipolar networks,
activity can be perturbed in a single processing step to
move the network into a different region of attractor space.
However, the attractors have approximately equal switching
activity. As the impact of a single switch on the network
can be dramatic, potentially disparate regions of the attractor
space can be very quickly traversed and explored — the types
of network topology (and hence variation in behaviours) that
can be reached in a single processing step is much larger in
the unipolar case. This is perhaps most easily shown in the
time to solve each task, which is always statistically faster
than the other two network types. Figure 10(b) shows a
smoother switching frequency for unipolar networks — as
a single switch can have a large impact on the network, no
rapid spikes in switching activity are required. On a hardware
level, the bipolar networks can be seen to place a lot of stress
on a few key synapses, wheres the unipolar networks rely on
moderate switching activity of many synapses — potentially
a more long-lasting strategy.

Stable activity is achieved through synchronised switching
and balanced use of both LRS and HRS to moderate the
percolation of activity through the network. As with the
bipolar networks, unipolar networks use “trigger” neurons
to change the action when required. In this case, the trigger
neuron affects a change on a network-wide scale, rather than
between only a small subnetwork. Self-stabilising activity is
observed, e.g. the network moves into a state which adds
activity which keeps the attractor in the given state even
when the neuron that causes the state change is subsequently
non-firing.

Unipolar attractors involve more of the network to create
the weight oscillator. It is thought that attractor participation
is higher as the synapses can cause much more activity
peturbation, larger attractors therefore a method of stabil-
ising the network by distributing/replicating certain required
internal behaviour so that it is not detrimentally disrupted.
Bipolar networks attractors are generally smaller in termsof
participation, but with many more possible states in them.

D. Discussion

The focus of this paper was the unipolar memristor
synapse, which is evolved for two robotics tasks. Overall,
the unipolar memristor is shown to provide numerous per-

formance benefits compared to the two other synapse types
in terms of faster attainment of the required behaviour and
better generated paths. The use of two experimental setups
(one reactive, one dynamic) allows us to talk with some
generality about the results: both the memory ability and
reactive behaviour are in some way improved through use of
the unipolar memristor. It has been clearly demonstrated that
the more coarse-grained attractors and restricted binary plas-
ticity scheme do not overtly impede the unipolar networks
ability to generate highly-fit pathfinding behaviour.

Evolution is shown to find solutions statistically faster on
both tasks when the networks used unipolar memristors when
compared to the other synapse types. More expedient goal-
finding behaviour can be attributed to the simpler unipolar
attractor space compared to bipolar memristors. Experiments
indicate that the ability to perform online behaviour adapta-
tion gives the unipolar memristor a similar advantage over
constant synapses. We can view the unipolar memristor as
sitting in a “sweet spot” in terms of complexity/evolvability
(bipolar memristors are capable of richer behaviours but are
more difficult to evolve, constant connections are simpler but
lack online adaptability).

One lingering question relates to the scalability of the
unipolar synapse to more complex tasks. Due to the sim-
pler switching characteristics and (at least) equivalent per-
formance when compared to the more traditional bipolar
synapse, we do not expect scalability to be an issue with
one synapse type any more than it would be with the
other. In fact, due to the reduced attractor space of the
unipolar network, one may expect it to scale better than the
bipolar networks. Due to their simpler two-state behaviour,
unipolar memristors are much easier to repeatedly fabricate
en massethan the more ubiquitous bipolar memristors due to
having switching profiles that are less sensitive to synthesis
conditions as they are only required to switch between two
states, and encapsulate more robust behaviours as they do not
rely on potentially complex interactions of specific analog
STDP curves to function. When this knowledge is combined
with the experimental results presented herein, interesting
questions are raised regarding the direction of neuromorphic
engineering, in particular the issue of biological realismvs.
computational efficiency. Do we aim for computing like a
human brain, or would some hybrid analog/digital approach
be more efficient? This article provides some basis to the
view that a non-biologically realistic, non-Hebbian archi-
tecture may present a more easily-traversable path towards
neuromorphic computing.
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