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Abstract

Two classes of dynamical recurrent neural
networks, Continuous Time Recurrent Neural
Networks (CTRNNs) (Yamauchi and Beer, 1994)
and Plastic Neural Networks (PNNs)
(Floreano and Urzelai, 2000) are compared
on two behavioral tasks aimed at exploring their
capabilities to display reinforcement-learning
like behaviors and adaptation to unpredictable
environmental changes. The networks report
similar performances on both tasks, but PNNs
display significantly better performance when
sensory-motor re-adaptation is required after the
evolutionary process. These results are discussed
in the context of behavioral, biological, and
computational definitions of learning.

1 Introduction

In the great majority of experiments in Evolutionary
Robotics (Nolfi and Floreano, 2000) evolved control sys-
tems consist of artificial neural networks most of which
include recurrent connections. Recurrent connections
potentially give a neural network rich temporal dynam-
ics as well as the possibility to capture and exploit time-
dependent events.

In recurrent neural networks, the activation states
of the neurons can detect and maintain time-
dependent activation patterns from sensors and/or
other neurons that occur only briefly over time
(Harvey et al., 1994). This information can modulate
behavior (Beer and Gallagher, 1992), produce different
actions for similar (or lacking) sensory information
(Floreano and Mondada, 1996), and be used to detect
and represent behavioral sequences (Tani, 1996).

Yamauchi and Beer (1994) showed that a particular
class of Continuous-Time Recurrent Neural Networks
(CTRNNs) (Hopfield, 1984) can be evolved to display
reinforcement-learning-like behavior without modifica-
tions of the connection strengths. The authors evolved
the connection strengths and neural time constants of

networks that were asked to produce different output se-
quences in the presence of certain input patterns and re-
inforcement signals. The reinforcement signal consisted
of toggling the value of an input neuron between zero
and one. The authors analyzed the evolved CTRNNs
using dynamical systems theory and showed that the re-
inforcement signals effectively modulated the state-space
trajectories of the neuron activations in order to produce
the desired output sequences.

Following a different approach, the dynamical and
behavioral properties of Plastic Neural Networks
(PNNs) was investigated in (Floreano and Urzelai, 2000,
Urzelai and Floreano, 2001). The neuron sign, learning
rate, and type of Hebbian learning (one of four possi-
ble learning rules) that was used to change on-line the
strengths of all incoming connections to a neuron was
evolved in networks with discrete-time recurrent connec-
tions.1 In these experiments, the connection strengths
were always initialized to small random values and mod-
ified after each neuron update using genetically-specified
Hebb rules and learning rates. Analysis of experimen-
tal results showed that the evolved PNNs were capa-
ble of solving complex behavioral tasks that require pre-
cise sequences of actions by rapidly switching synaptic
configuration whenever a new sequence of actions is re-
quired. Evolved PNNs also displayed remarkable on-line
adaptability to new environmental conditions without
requiring incremental evolution. However, no evidence
was found that PNNs could actually learn and retain
behavioral abilities over time or display reinforcement-
learning-like properties.

These two investigation directions – CTRNNs and
PNNs – provide apparently contrasting and non-intuitive
results. On the one hand, neural networks with evolv-
able continuous-time dynamics can display learning-like
behavior without synaptic plasticity. On the other hand,

1In networks with discrete-time recurrent connections the po-
tential dynamics are limited compared to CTRNNs, but the system
allows a simpler software implementation by maintaining a copy
of the neural activities at the previous time step. These kinds of
networks are sometimes referred to as having “memory units” and
have been studied, among others, by (Elman, 1990).
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networks with evolvable plastic connections can display
rich behavioral dynamics without learning-like proper-
ties. This apparent contrast can be resolved if one con-
siders that each model represents a specific implemen-
tation of a more general class of neural models with
time-dependent states. In the case of CTRNNs it is
the neurons which have a time-dependent state, whereas
in the case of PNNs the connection strengths are time-
dependent. Since the output of the network is a function
of the product between neuron activations and connec-
tion strengths in both cases, one may arbitrarily decide
where to apply the time-dependent property and, to a
first approximation, the two models would be equiv-
alent. Therefore, different abilities, such as reactive
and learning-like behavior, could be explained purely in
terms of different time-scales of dynamics.2

However, so far these two models have never been com-
pared on a set of tasks which require time-dependent
neural states. In this paper we begin to explore
these issues by experimentally comparing evolutionary
CTRNNs and PNNs on two sets of robotics experiments,
one aimed at evolving reinforcement learning-like behav-
iors and the other aimed at testing the systems adapt-
ability to various environmental changes.

2 Network Models

2.1 Continuous-Time Recurrent Neural Net-
works (CTRNNs)

In the continuous-time recurrent neural networks used
in this paper the state of each neuron is governed by the
following equation:

dγi
dt

=
1
τi

(
− γi +

N∑
j=1

wijAj +
S∑
k=1

wikIk

)
(1)

where N is the number of neurons, i (= 1, 2, ..., N)
is the index, γi describes the neuron state (cell poten-
tial), τi is the time constant, wij is the strength of the
synapse from the presynaptic neuron j to the postsy-
naptic neuron i, Aj = σ(γj − θj) is the activation of
the presynaptic neuron where σ(x) = 1/(1 + e−x) is the
standard logistic function and θj is a bias term. Finally,
S is the number of sensory receptors, wik is the strength
of the synapse from the presynaptic sensory receptor k
to the postsynaptic neuron i and Ik is the activation of
the sensory receptor (Ik ∈ [0, 1]). As in the work by
(Yamauchi and Beer, 1994) the Forward Euler numeri-
cal integration method is used. The iterative update
rule for the state of each neuron becomes:

2This last point was raised during personal discussions with
Inman Harvey and Ezequiel Di Paolo.

γi(n+1) = γi(n)+
∆t
τi

(
−γi(n)+

N∑
j=1

wijAj(n)+
S∑
k=1

wikIk

)
(2)

where n is the iteration step number and ∆t is the
step size. This integration method is numerically stable
when ∆t is less than twice the smallest time-constant
in the network(Hines and Carnevale, 1998). Initially the
state of each neuron is γi(0) = 0 ∀i, the step size set to
∆t = 1. The range of the other parameters were the
following:

τ ∈ [1, 70], θ ∈ [−1, 1] and w ∈ [−5, 5]

Notice from equation 2 that each neuron has an inter-
nal state and that the time constant τ controls its dy-
namics. Large time constants result in slowly changing
neuron states while small time constants approximate
reactive neurons.

2.2 Plastic Neural Networks (PNNs)

In the discrete-time, fully-recurrent, plastic neural net-
works used, each neuron activation Ai is updated using
the following equation at every activation cycle:

Ai(n+ 1) = σ

 N∑
j=1

wijAj(n)

+ Ii, (3)

where the activation of the sensory receptor Ii = 0
for hidden and motor neurons. As a consequence, the
range of Ai is [0, 2] for input neurons and [0, 1] for the
hidden and output neurons. Each synaptic weight wij is
randomly initialized in the range [0, 0.1] and is updated
after every sensory-motor cycle by the following rule:

wij(n+ 1) = wij(n) + η∆wij(n) (4)

where 0.0 < η < 1.0 is the learning rate and ∆wij is
one of four Hebb rules specified in the genotype:3

1. Plain Hebb rule: strengthens the synapse proportion-
ally to the correlated activity of the two neurons.

∆w = (1− w)xy

2. Postsynaptic rule: behaves as the plain Hebb rule,
but in addition it weakens the synapse when the post-
synaptic node is active but the presynaptic is not.

∆w = w (−1 + x) y + (1− w)xy

3Before applying a learning rule, the activation of input neurons
are divided by 2 to scale them into the range [0, 1].
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Figure 1: The Khepera robot used in the experiments. The

robot has (a) 8 infrared sensors (small black rectangles)

ditributed around the body that can measure object prox-

imity and light intensity; (b) a linear vision module with 64

equally-spaced photoreceptors covering a visual field of 36◦;

and (c) a floor-color sensor under the body between the two

wheels.

3. Presynaptic rule: weakening occurs when the presy-
naptic unit is active but the postsynaptic is not.

∆w = wx (−1 + y) + (1− w)xy

4. Covariance rule: strengthens the synapse whenever
the difference between the activations of the two neu-
rons is less than half their maximum activity, other-
wise the synapse is weakened.

∆w =
{

(1− w)F(x, y) if F(x, y) > 0
(w)F(x, y) otherwise

where F(x, y) = tanh(4(1−|x− y|)−2) is a measure
of the difference between the presynaptic and postsy-
naptic activity. F(x, y) > 0 if the difference is bigger
or equal to 0.5 (half the maximum node activation)
and F(x, y) < 0 if the difference is smaller than 0.5.

The the self-limiting component (1−w) is maintaining
synaptic strengths within the range [0, 1]. As a conse-
quence, synapses do not change sign.

3 The “Reinforcement Learning” Task

In this first experiment CTRNNs and PNNs are com-
pared on a task that requires acquisition and storage of
knowledge on the basis of a reinforcement signal provided
to the input units of the network. Given the simple ex-
perimental settings, the experiment is carried out in a re-
alistic simulation by sampling infrared sensor activations
(Miglino et al., 1995), computing geometric projections
for the linear camera inputs, and adding 5% uniform
noise to every value.

A simulated Khepera robot (figure 1) is positioned in
a white rectangular arena with two areas of potential re-
ward (figure 2), a light bulb to the left and a black ver-
tical stripe on the right. The robot has 6 trials to find
out where the reward area is located, go there and stay

Camera View:

Figure 2: The environment used in the reinforcement learn-

ing task. To the left there is a light bulb and to the right

there is black stripe on the wall. A gray reward-area can be

randomly placed in either end (here to the right). The robot

is constrained to move along the dashed line always facing

the black stripe on the wall. Below the environment the view

from the linear camera is shown.

over it. At the beginning, the position of the reward area
(grey-filled sector in figure 2) is randomly chosen, either
below the light bulb or below the stripe, and remains the
same for 3 consecutive trials. After 3 trials, the reward
area is switched to the other end of the environment. At
the beginning of each trial, the robot is randomly posi-
tioned within the center third of the dashed line shown
in figure 2, always facing the black stripe. In order to
make the task simpler, the robot can only move along
this line back and forth at variable speed, but cannot
rotate.

The reinforcement signal comes from a floor-color sen-
sor (figure 1, c) which is on when the robot is inside the
gray reward-zone and off otherwise. Notice that this in-
formation is a sensory input just like others, in contrast
to conventional reinforcement learning systems where
the reward signal plays a special role in the architecture
and in the learning algorithm (Sutton and Barto, 1998).

3.1 Network Architectures and Genetic Encod-
ing

In order to maintain consistency with previous results
reported in the literature, the architectures and genetic
encodings of the CTRNNs and PNNs used are slightly
different.

The architecture difference is that sensory receptors
in CTRNNs receive information only from the sen-
sors of the robot (figure 3), whereas in PNNs sensory
neurons receive information from all other neurons in
the network, including other sensory neurons and self-
connections (figure 4).

In addition, the PNNs have a bias neuron, with ac-
tivation fixed to 1, whose plastic connections act as a
variable threshold on post-synaptic neurons. Instead,
the bias values (or thresholds) of the CTRNNs are fixed
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Figure 3: CTRNNs: Genetic encoding of the parameters for

one neuron (top) and architecture of the CTRNN (bottom)

used in the reinforcement learning task. Genetic Encoding:

Each neuron parameter is encoded using 5 bits. θ is the bias,

τ is the time constant, and w1 . . . wn are the strengths of the

incoming synapses to this neuron. Neural Architecture: The

network consists of 5 neurons (4 hidden + 1 motor output).

Every neuron has synaptic connections from all neurons and

all sensory receptors. In total, the network has 55 synaptic

connections.

and individually encoded in the genetic string (see de-
scription of genetic encoding below).

The networks have 6 sensory inputs, one from the each
of the following receptors (figure 5):

• 2 Light receptors: The robots infrared sensors in pas-
sive mode are used to measure the ambient light.
Only the two sensors on the back of the robot are
used.

• 3 Visual receptors: The linear vision module has 64
equally spaced photoreceptors spanning a visual field
of 36◦ (figure 1, b). The visual field is divided into 3
sectors and the average pixel-value (256 gray levels)
in each sector is passed to the corresponding visual
receptor.

• 1 Floor receptor: An infrared sensor in the center
of the robot pointing downwards (figure 1, c) mea-
sures the colour of the floor (in 256 gray levels). If
the robot is inside the reward area the corresponding
receptor is on and off otherwise.

The values from each receptor are scaled into the range
[0, 1]. The activation of the motor neuron determines the
speed of both wheels of the simulated robot. Activations
above 0.5 correspond to forward motion, activations be-
low 0.5 correspond to backward motion (the closer to 1
or 0, the faster the motion).

The parameters of both types of networks are encoded
in genotype bitstrings. In the case of CTRNNs (figure
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Figure 4: PNNs: Genetic encoding of the parameters for

one neuron (top) and architecture of the PNN (bottom) used

in the reinforcement learning task. Genetic Encoding: Each

neuron is encoded using 5 bits. The first bit determines the

sign of all outgoing synapses and the remaining four bits de-

termine the Hebb rule (one out of four types) and learning

rate (one out of four values) for all incoming synapses to that

neuron. Neural Architecture: The network consists of 7 sen-

sory input neurons, 4 hidden neurons and one motor output

neuron. The network is fully recurrent giving a total of 144

synaptic connections.

3, top), each neuron has 13 encoded parameters: a time
constant (τ), a threshold (θ), and 11 synaptic strengths
(wij). Each parameter is encoded using 5 bits giving a
total genotype length of 325 bits.

In the case of PNNs (figure 4, top), each neuron has
3 encoded parameters: the sign bit determines the sign
of all the outgoing synapses and the remaining four bits
determines the properties of all incoming synapses to
this neuron, (2 bits for one of four Hebb rules and 2 bits
for one of four learning rates, namely 0.0, 0.3, 0.6, 1.0).
Consequently, all incoming synapses to a given node have
the same properties. The total genotype length in this
case is 60 bits.

3.2 Experiments

The experiments are carried out in simulation using a
rank-based selection. A population of 100 neural con-
trollers is evolved for 100 generations. At every gener-
ation the best 20 individuals make 5 copies each. One
copy of the best individual remains unchanged (elitism).
Single-point crossover with a 0.04 probability and bit-
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Figure 5: Configuration of the 6 sensory neurons used in the

reinforcement learning task.

switch mutation with a 0.02 probability per bit are used.
Every neural controller is tested for 3 times (epochs) of
6 trials each. Each trial lasts 150 sensory-motor cycles
(one sensory-motor cycle corresponds to 100 ms on the
real robot). At the beginning of each epoch, the neu-
ral controller is re-initialized. In the case of CTRNNs,
the states of the neurons are set to 0 and in the case of
PNNs the synaptic strengths are initialized to small ran-
dom values in the interval [0, 0.1] (recall that the sign of
the synapse is given by the neuron from where the signal
starts).

The fitness of the individual is proportional to the
amount of time spent on the reward areas subtracted
a penalty for spending time in only one of the two areas:

fitness =
∑epochs
i=1 f1(i) + f2(i)− |f1(i)− f2(i)|

epochs× trials per epoch× steps per trial

where f1 is the number of steps spent in reward area
in trials with the reward area to the left and f2 is the
number of steps spent in reward area in the trials with
the reward area to the right. Notice that if f1 or f2 is
zero in an epoch the total fitness is zero in that epoch.
Without taking the absolute difference between f1 and
f2, evolved controllers find the sub-optimal solution of
only accumulating fitness points in one end of the envi-
ronment.

For each type of neural controller (CTRNN and PNN)
the experiment is repeated 10 times with different initial-
izations of the pseudo-random number generator. The
results of the experiments using CTRNNs are plotted in
figure 6. Only 40 generations are required for the fitness
values to reach a stable level.

The typical behavior of an evolved controller is visu-
alized in figure 7. The x-position of the robot over time
is plotted for an entire epoch of 6 trials 4.

Before the first step of each trial the robot is randomly
placed within the center third of the x-axis. This evolved
robot begins to move to the left where the reward area
is positioned for the first 3 trials for this individual. Af-
ter 3 trials the reward area is moved to the right side.
The robot still moves to the left by default, but when it

4Each trial is shortened from 150 to 100 steps in figure 7 because
the position of the robot always stabilizes within this timeframe
for this individual.
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Figure 6: Reinforcement Learning Task, CTRNNs. Thick line

= best individual; thin line = population average; dotted line

= best individual of best replication.
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Figure 7: Typical behavior of an evolved robot in the rein-

forcement learning task. Top: Robot x-position is plotted

against time over 6 trials. Bottom: Environment layout. See

text for description.
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Figure 8: Reinforcement Learning Task, PNNs. Thick line =

best individual; thin line = population average; dotted line

= best individual of best replication.

discovers that the reward signal remains off, it reverses
direction and moves towards the right side. For the re-
maining trials, it “remembers” that the reward area is
on the right side and always moves in that direction.

The fitness data for the experiments with PNNs are
plotted in figure 8 and the behavior of the best evolved
individuals are similar to the one shown in figure 7. The
fitness values in these experiments are lower for two rea-
sons. The first reason is that PNNs must develop synap-
tic weights at the beginning of each epoch (which takes
time and has an indirect fitness cost) whereas CTRNNs
are functional from the very beginning of the epoch. The
second reason is that only one replication of the exper-
iment was successful at evolving individuals capable of
solving the task reliably. In the other replications the
succes of the best individuals depended on the initial
position of the robot and the random initializtion of the
synaptic weights resulting in a drop in performance un-
der some unlucky initial conditions.

4 Adaptation to Changes

In order to further explore the adaptation capabil-
ities of the two types of networks, an experimen-
tal setup investigated in (Floreano and Urzelai, 2000,
Urzelai and Floreano, 2001) is now used. The environ-
ment (figure 9) is identical to the one used in the re-
inforcement learning task, but the position of the gray
fitness area is now fixed under the light bulb and a black
lightswitch area has been added under the black stripe.
Initially the light is off, but it is switched on if the robot
passes over the black area. The task of the robot is
to spend as much time as possible under the light bulb
when the light is on. Therefore, the robot must first
discover how to switch on the light. Each individual
of the population is tested for 3 trials of 500 sensory-
motor cycles (100 ms) each. The experiments are car-

Figure 9: The Lightswitch Task: The Khepera robot can gain

fitness by staying on the gray area when the light is on. Ini-

tially the light is off, but the robot can switch it on by passing

first over the black area. The neural controller has no infor-

mation from the floor-sensor which is relayed to an external

computer in order to automatically switch the light on and

compute fitness values.
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Figure 10: Configuration of the 10 sensory neurons used in

the lightswitch task.

ried out in simulation and some evolved individuals are
then tested in the real environment (evolutionary ex-
periments on the real robot with PNNs are reported in
(Urzelai and Floreano, 2001) and the results are similar
to those obtained in simulation).

The fitness function is given by the number of sensory
motor cycles spent on the gray area below the light bulb
when the light is on divided by the total number of cycles
available (500). In order to maximize this fitness func-
tion, the robot should find the lightswitch area, go there
in order to switch the light on, and then move towards
the light as soon as possible, and remain on the gray
area.5 Since this sequence of actions takes time (several
sensory motor cycles), the fitness of a robot will never be
1.0. A robot that cannot manage to complete the entire
sequence will get zero fitness.

The architectures of the two types of neural networks
are identical to those described earlier, but the configu-
ration of the sensory receptors and motor output neurons
is adapted to this new task. The number of sensory re-
ceptors is extended to 10: 4 infrared proximity receptors
to detect distance form walls (within a range of 5 cm),

5Notice that the fitness function does not explicitly reward this
sequence of actions, but only the final outcome of the overall be-
havior.
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Figure 11: Ligthswitch Task, CTRNNs. Thick line = best

individual; thin line = population average.
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Figure 12: Ligthswitch Task, PNNs. Thick line = best indi-

vidual; thin line = population average.

3 light receptors, and 3 visual receptors (figure 10).

4.1 Experiments

Two sets of experiments are run, one for each type of
network. The results are shown in figures 11 and 12. In
both cases, evolved controllers are capable of perform-
ing the entire sequence of actions. The reason why the
PNNs report lower fitness values is that synaptic adap-
tation takes time and therefore has an implicit fitness
cost. In addition, evolved PNNs tend to select lower
motor speeds for the robot. However, all experimental
runs end up with successful strategies.

A typical trace of a successful robot is shown in figure
13. The robot turns on the spot, moves directly towards
the black area to turn on the light and finally moves to-
wards the light bulb and remains over the gray fitness
area. Small differences in the behaviors generated by the
two types of networks are noticed. Robots controlled by
CTRNNs generally turn and move directly towards the

Figure 13: Typical trace of an evolved robot in the lightswitch

task.

black area at first. Instead, robots controlled by PNNs
often start out by first moving forward hitting the first
wall and afterwards doing a backward turn while orient-
ing towards the black stripe and approaching the black
area. Recall the PNNs start out with randomly initial-
ized synapses and must develop all abilities, including
obstacle avoidance from scratch.

4.2 Environmental Changes

In contrast to the reinforcement learning task, this task
requires more interactions between the robot and the
environment and includes a larger number of sensory-
motor correlations that must be taken into account by
evolutionary neural controllers. Therefore, it is bet-
ter suited for applying a number of modifications af-
ter evolution to test on-line adaptive abilities of evolved
CTRNNs and PNNs.

In order to measure the performances of evolved con-
trollers in environments with new characteristics, the
best individual of the last generation for each of the 10
replications is tested in environments with white (as used
during evolution), gray, and black walls. The responses
of infrared proximity sensors are lower for darker walls,
which requires the robot to avoid walls at lower sensory
activation levels than with brighter walls.

Figure 14 shows the average fitness values of the best
individuals in environments with white, gray and black
walls for CTRNNs (left) and PNNs (right). In the
CTRNN case, the performance drops significantly in the
gray environment case and dramatically in the black en-
vironment. In the gray environment, evolved individuals
are only able to complete the correct sequence of actions
in one third of the trials and in the black environment
this number drops to one out of 20 trials. In the PNN
case a performance drop is observed in gray and black
environments, but this is not so drastic when compared
to the performance in white environments. Most im-
portantly, PNN individuals can still solve the task but
require longer time to do so because they interact with
the walls for longer time. Evolved PNNs are capable
of adapting to new sensory situations even in the black
environment while CTRNNs cannot cope with it.
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Figure 14: Performance of the evolved CTRNNs (left) and

PNNs (right) tested in environments with white, gray and

black walls. Each fitness value is the average over 100 tests

(the best individual of each of the 10 replications is tested 10

times each).

In a second set of tests, the spatial relationships of the
objects in the environment are modified. For each trial,
the lightswitch area and the light bulb area is randomly
located along the walls (discarding combinations with
area overlap). The best individual of the last generation
for each of the 10 replications is tested in 10 randomly
generated environments. The results are reported in fig-
ure 15. To the left are the fitness values for individu-
als controlled by CTRNNs and to the right the fitness
values for the individuals controlled by PNNs. In both
cases there is a small drop in performance in the new
environments, but both CTRNNs and PNNs succeed in
solving the task. In other words, this modification does
not show any difference in the adaptation capabilities of
the two types of networks.

As a final test, the neural controllers (which were
evolved in simulation) are tested in the real environment
on a real Khepera robot (see figure 9). Despite the use
of a realistic simulation, there is still a significant differ-
ence in sensory and motor properties of simulated and
physical robots. The best individual of the last gener-
ation in each of the 10 replications is tested 3 times on
the physical robot. Figure 16 shows that CTRNNs fail
on the real robot, while PNNs are less affected by the
transfer and still function in the real environment. The
small performance drop in the PNN case is due to the
fact that the robot sometimes performs looping trajecto-
ries around the fitness area without coming to rest. The
main reason for the failure of the CTRNNs is that the
robots not are able to reliably approach the black stripe
on the wall. These networks are not capable of adapt-
ing to changed sensory-motor conditions and the robot
often gets attracted to shadows or keeps spinning and
bumping into walls.
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Figure 15: Performance of evolved CTRNNs and PNNs

tested in the environment used during evolution (white bar)

and in an environment where the lightswitch area and the fit-

ness area are positioned randomly along the walls (gray bar).

Each fitness value is the average over 100 tests (the best indi-

vidual of each of the 10 replications is tested 10 times each).

5 Discussion

The experimental results presented in this paper ques-
tion the definition of learning. From a behavioral per-
spective, learning is usually associated with acquisi-
tion of new knowledge, skills, and memory retention
(Gallistel, 1990). From a biological and computational
perspective, learning is associated to synaptic change
(Churchland and Sejnowski, 1994). However, the exper-
iments described in this paper show that both assump-
tions are not necessary and unique. On the one hand, dy-
namical neural networks without synaptic plasticity dis-
play reinforcement learning behavior (confirming earlier
experiments described in (Yamauchi and Beer, 1994)).
On the other hand, networks with plastic synapses
do not necessarily retain previously acquired knowl-
edge (data regarding this latter point are described in
(Urzelai and Floreano, 2001)).

The experiments show that each type of network
model – CTRNN and PNN – is capable of displaying
learning-like abilities and can solve complex tasks which
require sequential behavior. However, the PNNs dis-
play a clear advantage when confronted with environ-
mental conditions not seen during the evolutionary pro-
cess. In the two tests on unpredictable changes where
PNNs scored significantly better than CTRNNs – walls
of different brightness and transfer from simulated to
physical robots – both sensory and motor adaptation is
required. On the contrary sensory-motor adaptation is
not necessary in the tests with spatial reconfiguration of
the environment where the same stripe-directed naviga-
tion and light following behaviors as developed during
evolution is efficient in several environments. In this lat-
ter test, both network models indeed display the same
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Figure 16: Performance of evolved CTRNNs and PNNs

tested in the simulated robot used during evolution (white

bar) and in the real Khepera robot (gray bar). Each fitness

value is an average over 30 tests (the best individual of each

of the 10 replications is tested 3 times each).

performance.
Correlation-based synaptic plasticity therefore seems

useful to maintain coherent sensory-motor mappings in
a variety of different environments. Considering the
importance of sensory-motor coordination in even the
most primitive organisms equipped with neural cells,
one may (wildly) speculate that correlation-based (Heb-
bian) synaptic plasticity was discovered by evolution as
a simple homeostatic mechanism (Ashby, 1960) to cope
with partially changing and unpredictable environments.
However, one may argue that the PNN architecture used
in these experiments provides an advantage with respect
to this because the sensory neurons are interconnected
and therefore may better capture and maintain sensory-
motor correlation than in the CTRNN case where cor-
relations must be captured and maintained by hidden
units.

In a previous work (Urzelai and Floreano, 2001), it
was shown that PNNs rapidly change most synaptic
strengths when the sensory information changes signifi-
cantly. This fast re-wiring of the entire network is quite
efficient in the simple sensory-motor tasks described in
this paper, but may not be suitable for more complex sit-
uations where there is a survival advantage in acquiring
and retaining complex skills or spatial configurations.
Indeed, not all evolutionary runs with PNNs were ca-
pable of solving completely the reinforcement-learning
task described here. A promising direction consists of
adding mechanisms for enabling and disabling synap-
tic plasticity of the Hebb-rules described here. This
idea has been recently explored to evolve reinforcement
learning-like foraging (Niv et al., 2001), adapt to dis-
torted optical information (DiPaolo, 2000), and adapt-
ing walking patterns to terrains of variable inclination
(Fujii et al., 2001). However, the tasks explored in those

works are not significantly more complex than those
described here and it can be argued whether the en-
abling/disabling mechanism is necessary. Ironically, a
serious problem seems to be the definition of sufficiently
complex learning problems that require more than “min-
imally cognitive behaviors” and yet remain sufficiently
simple for analysis.

As a final note, the size of the populations of CTRNNs
in the experiments described here is one order of mag-
nitude smaller than the one used in the experiments by
(Yamauchi and Beer, 1994). Although the two types of
networks are slightly different in the sensory-motor inter-
face, the major difference is, that in the work presented
in this paper, binary, instead of real-valued, genetic en-
coding is used. Consequently, the search space is much
smaller, but this does not seem to limit the rich dynam-
ics of the networks.

6 Conclusion

Two classes of dynamical recurrent neural networks,
CTRNNs and PNNs, have been compared on two behav-
ioral tasks aimed at exploring their capabilities to dis-
play reinforcement-learning like behaviors and adapta-
tion to unpredictable environmental changes. Although
both networks displayed similar performances (slightly
offset in PNNs by the time required for synaptic develop-
ment), PNNs displayed significantly better performance
when sensory-motor re-adaptation is required after the
evolutionary process.

These results have been discussed within the perspec-
tive of behavioral, biological, and computational defini-
tions of learning. It has been argued that correlation-
based synaptic plasticity may play a major role in de-
veloping and maintaining sensory-motor coordination in
partially changing and unpredictable environments.

Although the combination of the two models may have
some interest, we believe that more complex behavioral
and cognitive abilities may be achieved by employing
mechanisms for enabling and disabling synaptic plastic-
ity in environmental conditions that require the devel-
opment and retention of sensory-motor skills and spatial
memories.
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