915 research outputs found
Caspase-8 controls the gut response to microbial challenges by Tnf-alpha-dependent and independent pathways
Objectives: Intestinal epithelial cells (IEC) express toll-like receptors (TLR) that facilitate microbial recognition. Stimulation of TLR ligands induces a transient increase in epithelial cell shedding, a mechanism that serves the antibacterial and antiviral host defence of the epithelium and promotes elimination of intracellular pathogens. Although activation of the extrinsic apoptosis pathway has been described during inflammatory shedding, its functional involvement is currently unclear. Design: We investigated the functional involvement of caspase-8 signalling in microbial-induced intestinal cell shedding by injecting Lipopolysaccharide (LPS) to mimic bacterial pathogens and poly(I:C) as a probe for RNA viruses in vivo. Results: TLR stimulation of IEC was associated with a rapid activation of caspase-8 and increased epithelial cell shedding. In mice with an epithelial cell-specific deletion of caspase-8 TLR stimulation caused Rip3-dependent epithelial necroptosis instead of apoptosis. Mortality and tissue damage were more severe in mice in which IECs died by necroptosis than apoptosis. Inhibition of receptor-interacting protein (Rip) kinases rescued the epithelium from TLR-induced gut damage. TLR3-induced necroptosis was directly mediated via TRIF-dependent pathways, independent of Tnf-α and type III interferons, whereas TLR4-induced tissue damage was critically dependent on Tnf-α. Conclusions: Together, our data demonstrate an essential role for caspase-8 in maintaining the gut barrier in response to mucosal pathogens by permitting inflammatory shedding and preventing necroptosis of infected cells. These data suggest that therapeutic strategies targeting the cell death machinery represent a promising new option for the treatment of inflammatory and infective enteropathies
Self-efficacy enhanced in a cross-cultural context through an initiative in under-resourced schools in KwaZulu-Natal, South Africa
This paper discusses the Khanyisa Programme, an initiative in KwaZulu-Natal, South Africa, where learners from under-resourced schools are supported by teachers and high achievers in Grade 11 and 12 from a previously advantaged state school under apartheid. A qualitative, evaluative study was undertaken to identify key elements in the ongoing success of the programme and collect participant suggestions for improvement. The findings, discussed within the framework of self-efficacy theory, identified enormous gains by Khanyisa learners, leading to vastly improved career prospects
Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage
Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.- Background - Results -- Authentication of a preserved oral biofilm in calculus samples -- Dental calculus and plaque biofilm communities are distinct -- Health-associated communities of dental plaque and calculus are distinct -- Signatures of health and of disease are shared in modern and historic calculus samples -- Microbial community differences between health and disease in calculus are poorly resolved -- Absence of caries-specific microbial profiles in dental calculus -- Microbial co-exclusion patterns in plaque and calculus reflect biofilm maturity -- Microbial complexes in plaque and calculus -- Functional prediction in calculus is poorly predictive of health status -- Proteomic profiles of historic healthy site calculus -- Correlations between taxonomic, proteomic, and metabolomic profiles - Discussion - Conclusions - Materials and methods --Historic and modern calculus sample collection DNA extraction -- DNA library construction and high-throughput sequencing -- DNA sequence processing -- Genetic assessment of historic calculus sample preservation -- Genetic microbial taxonomic profiling -- Principal component analysis -- Assessment of differentially abundant taxa -- Sparse partial least squares-discriminant analysis -- Assessment of microbial co-exclusion patterns -- Gene functional categorization with SEED -- Proteomics -- Metabolomics -- Regularized canonical correlation analysi
Assessment of wild plants for phytoremediation of heavy metals in soils surrounding the thermal power station
ArticleThe present investigation was carried out to evaluate the phytoextraction potential of three main wild plant species: annual nettle (Urtica urens L.), daisy fleabane (Stenactis annua (L.) Ness.) and yarrow (Achillea millefolium L.) that grow spontaneously in heavy metal contaminated areas near the thermal power station in Kakanj, Bosnia and Herzegovina. Analyses of the heavy metal content (Ni, Fe, Cr, Cu, Zn, Cd, Pb, Mn) in soil and plant samples taken from the examined area were performed using atomic absorption spectrophotometry. The results obtained revealed that the examined soils are polluted by Ni and Pb and contain relatively high value of Cr and Fe. Annual nettle, daisy fleabane and yarrow have not shown high efficiency in the absorption and accumulation of heavy metals from polluted soils, and therefore these plants are not be considered as potential phytoremediators of soils on the examined area. Furthermore, the results of the study undoubtedly confirm the fact that the total content of heavy metals in soils is not a sufficient parameter for estimating the toxicity of heavy metals in soils and consequently for their transfer and accumulation in plants
Exploring partnership: Reflections on an international collaboration.
yesThis article explores some of the challenges involved in a collaborative mental health partnership, drawing on the reflections of two project members from the Chainama College of Health Sciences in Zambia and the Leeds Metropolitan University in England. The aim of the project was to support the education and training of the mental health workforce in Zambia as services shift from institutional to community-based care. The discussion is located within Gray’s ‘three-pronged dilemma’ and debates concerning the internationalisation agenda in social work and higher education. The conclusion emphasises the benefits and tensions of partnership working between ‘developed’ and ‘developing’ countries
Does sand content in spawning substrate result in early larval emergence? Evidence from a lithophilic cyprinid fish
The spawning success of lithophilic salmonids is strongly influenced by the fine sediment content (“fines”) of spawning substrates, yet knowledge on the impacts of fines on the spawning of non‐salmonid lithophiles remains limited, despite their ecological and socio‐economic importance in European rivers. Consequently, the aim here was to use an ex‐situ experiment to investigate the impact of sand content on egg survival and timing of larval emergence of the surface‐spawning cyprinid European barbel Barbus barbus. Thirty incubator boxes within a recirculating system were filled with one of five experimental sediment mixtures (0%–40% sand by mass) that each contained 300 fertilised eggs at a depth of 50 mm. Emerged, free‐swimming larvae were captured and counted daily to assess grain‐size effects on larval survival and emergence. Specifically, total proportion of emerged larvae, cumulative daily proportion of emerged larvae and time required to reach 50% emergence were measured during the study. Whilst the proportion of sand in the sediments did not have a significant impact on egg‐to‐emergence survival (mean survival per treatment 75%–79%), it significantly affected the timing of larval emergence to the water column; early emergence was detected in treatments with elevated sand content (on average, 50% emergence after 12–13 days versus 19 days in the control). Similar to findings from salmonid studies, these results suggest high sand content in spawning gravels can influence timing of larval emergence and potentially cyprinid lithophilic fish survival
Hydration in Deep Eutectic Solvents Induces Non-monotonic Changes in the Conformation and Stability of Proteins
The preservation of labile biomolecules presents a major challenge in chemistry, and deep eutectic solvents (DESs) have emerged as suitable environments for this purpose. However, how the hydration of DESs impacts the behavior of proteins is often neglected. Here, we demonstrate that the amino acid environment and secondary structure of two proteins (bovine serum albumin and lysozyme) and an antibody (immunoglobulin G) in 1:2 choline chloride:glycerol and 1:2 choline chloride:urea follow a re-entrant behavior with solvent hydration. A dome-shaped transition is observed with a folded or partially folded structure at very low (40 wt % H2O) DES hydration, while protein unfolding increases between those regimes. Hydration also affects protein conformation and stability, as demonstrated for bovine serum albumin in hydrated 1:2 choline chloride:glycerol. In the neat DES, bovine serum albumin remains partially folded and unexpectedly undergoes unfolding and oligomerization at low water content. At intermediate hydration, the protein begins to refold and gradually retrieves the native monomer–dimer equilibrium. However, ca. 36 wt % H2O is required to recover the native folding fully. The half-denaturation temperature of the protein increases with decreasing hydration, but even the dilute DESs significantly enhance the thermal stability of bovine serum albumin. Also, protein unfolding can be reversed by rehydrating the sample to the high hydration regime, also recovering protein function. This correlation provides a new perspective to understanding protein behavior in hydrated DESs, where quantifying the DES hydration becomes imperative to identifying the folding and stability of proteinsA.S.F. acknowledges the Spanish Ministerio de Universidades for the awarded Maria Zambrano fellowship. Also, the research in this study was performed with financial support from Vinnova─Swedish Governmental Agency for Innovation Systems within the NextBioForm Competence Centre and from The Crafoord Foundation (grant #20190750). The authors thank the Institute Laue-Langevin for the awarded beamtime (8-03-1049)S
- …
