8,558 research outputs found

    High mass X-ray binaries in the NIRorbital solutions of two highly obscured systems

    Get PDF
    The maximum mass of a neutron star (NS) is poorly defined. Theoretical attempts to define this mass have thus far been unsuccessful. Observational results currently provide the only means of narrowing this mass range down. Eclipsing X-ray binary (XRB) pulsar systems are the only interacting binaries in which the mass of the NS may be measured directly. Only 10 such systems are known to exist, 6 of which have yielded NS masses in the range 1.06 - 1.86 M⊙_{\odot}.We present the first orbital solutions of two further eclipsing systems, OAO 1657-415 and EXO 1722-363, whose donor stars have only recently been identified. Using observations obtained using the VLT/ISAAC NIR spectrograph, our initial work was concerned with providing an accurate spectral classification of the two counterpart stars, leading to a consistent explanation of the mechanism for spin period evolution of OAO 1657-415. Calculating radial velocities allowed orbital solutions for both systems to be computed. These are the first accurate determinations of the NS and counterpart masses in XRB pulsar systems to be made employing NIR spectroscopy.Comment: 5 pages, 3 figures, contribution to the proceedings of "The multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph. Coll., 12-16 July 201

    Newtonian Counterparts of Spin 2 Massless Discontinuities

    Get PDF
    Massive spin 2 theories in flat or cosmological (Λ≠0\Lambda \ne 0) backgrounds are subject to discontinuities as the masses tend to zero. We show and explain physically why their Newtonian limits do not inherit this behaviour. On the other hand, conventional ``Newtonian cosmology'', where Λ\Lambda is a constant source of the potential, displays discontinuities: e.g. for any finite range, Λ\Lambda can be totally removed.Comment: 6 pages, amplifies the ``Newtonian cosmology'' analysis. To appear as a Class. Quantum Grav. Lette

    New observations of stratospheric N2O5

    Get PDF
    The unequivocal detection of N2O5 in the stratosphere was reported by Toon et al. based on measurements of the absorption by the N2O5 bands at 1246 and 1720/cm in solar occulation spectra recorded at sunrise near 47 S latitude by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment during the Spacelab 3 (SL3) shuttle mission. Additional measurements and analysis of stratospheric N2O5 derived from the ATMOS/SL3 spectra are reported. The primary results are the detection and measurement of N2O5 absorption at sunset in the lower stratosphere, the inversion of a precise (approximately 10 percent) N2O5 sunrise vertical distribution between 25.5 and 37.5 km altitude, and the identification and measurement of absorption by the N2O5 743/cm band at sunrise. Assuming 4.32 x 10(sup -17) and 4.36 x 10(sup -17)/cm/molecule/sq cm respectively for the integrated intensities of the 1246 and 743/cm bands at stratospheric temperatures, retrieved volume mixing ratios in parts per billion by volume (ppbv) at sunrise (47 S latitude) are 1.32 + or - 0.34 at 37.5 km, 1.53 + or - 0.35 at 35.5 km, 1.63 + or - 0.36 at 33.5 km, 1.60 + or - 0.34 at 31.5 km, 1.43 + or - 0.30 at 29.5 km, 1.15 + or - 0.24 at 27.5 km, and 0.73 + or - 0.15 at 25.5 km. Retrieved VMRs in ppbv at sunset (30 N latitude) are 0.13 + or - 0.05 at 29.5 km, 0.14 + or - 0.05 at 27.5 km, and 0.10 + or - 0.04 at 25.5 km. Quoted error limits (1 sigma) include the error in the assumed band intensities (approximately 20 percent). Within the error limits of the measurements, the inferred mixing ratios at sunrise agree with diurnal photochemical model predictions obtained by two groups using current photochemical data. The measured mixing ratios at sunset are lower than the model predictions with differences of about a factor of 2 at 25 km altitude

    Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon

    Get PDF
    In mathematical physical analyses of Szilard's engine and Maxwell's demon, a general assumption (explicit or implicit) is that one can neglect the energy needed for relocating the piston in Szilard's engine and for driving the trap door in Maxwell's demon. If this basic assumption is wrong, then the conclusions of a vast literature on the implications of the Second Law of Thermodynamics and of Landauer's erasure theorem are incorrect too. Our analyses of the fundamental information physical aspects of various type of control within Szilard's engine and Maxwell's demon indicate that the entropy production due to the necessary generation of information yield much greater energy dissipation than the energy Szilard's engine is able to produce even if all sources of dissipation in the rest of these demons (due to measurement, decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical meaning of control-information and the related entropy production. Criticism of recent experiments adde

    Dual Band a-Si:H Solar-Slot Antenna for 2.4/5.2GHz WLAN Applications

    Get PDF
    A simple and compact design of solar-slot antenna for dual band 2.4/5.2GHz wireless local area networks (WLAN) applications is proposed. The design employs amorphous silicon (a-Si:H) solar cells in polyimide substrate with an embedded twin strip slot structure to generate dual resonant frequencies. A T-shaped microstripline feed is used to excite the twin slot in the a-Si:H solar cell. The measured impedance bandwidths for the proposed solar antenna are 25.9% (642 MHz) centered at 2.482 GHz and 8.2% (420 MHz) centered at 5.098 GHz. The measured gain at 2.4 and 5.2 GHz are 3.1 dBi and 2.1 dBi respectively

    Contributions to the Science of Environmental Impact Assessment: Three Papers on the Arctic Cisco (Coregonus autumnalis) of Northern Alaska

    Get PDF
    Editor's Introduction -- D. W. Norton; An Assessment of the Colville River Delta Stock of Arctic Cisco--Migrants from Canada? -- B. J. Gallaway, W. B. Griffiths, P. C. Craig, W. J. Gazey, and J. W. Helmericks; Temperature Preference of Juvenile Arctic Cisco (Coregonus autumnalis) From the Alaskan Beaufort Sea -- R. G. Fechhelm, W. H. Neill, and B. J. Gallaway; Modeling Movements and Distribution of Arctic Cisco (Coregonus autumnalis) Relative to Temperature-Salinity Regimes of the Beaufort Sea Near the Waterflood Causeway, Prudhoe Bay, Alaska. -- W. H. Neill, R. G. Fechhelm, B. J. Gallaway, J. D. Bryan, and S. W. Anderson; Notice to Author

    Preliminary determinations of the masses of the neutron star and mass donor in the high mass X-ray binary system EXO 1722-363

    Get PDF
    Aims. We intended to measure the radial velocity curve of the supergiant companion to the eclipsing high mass X-ray binary pulsar EXO 1722–363 and hence determine the stellar masses of the components. Methods. We used a set of archival Ks-band infrared spectra of the counterpart to EXO 1722–363 obtained using ISAAC on the VLT, and cross-correlated them in order to measure the radial velocity of the star. Results. The resulting radial velocity curve has a semi-amplitude of 24.5 ± 5.0 km s-1. When combined with other measured parameters of the system, this yields masses in the range 1.5 ± 0.4-1.6 ± 0.4 M⊙ for the neutron star and 13.6 ± 1.6-15.2 ± 1.9 M⊙ for the B0–1 Ia supergiant companion. These lower and upper limits were obtained under the assumption that the system is viewed edge-on (i = 90°) for the lower limit and the supergiant fills its Roche lobe (β = 1) for the upper limit respectively. The system inclination is constrained to i > 75° and the Roche lobe-filling factor of the supergiant is β > 0.9. Additionally we were able to further constrain our distance determination to be 7.1 ≤ d ≤ 7.9 kpc for EXO 1722–363. The X-ray luminosity for this distance range is 4.7 x 1035 ≤ 9.2 x 1036 erg s-1. Conclusions. EXO 1722–363 therefore becomes the seventh of the ten known eclipsing X-ray binary pulsars for which a dynamical neutron star mass solution has been determined. Additionally EXO 1722–363 is the first such system to have a neutron star mass measurement made utilising near-infrared spectroscopy
    • …
    corecore