194 research outputs found
A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division
The Min system in Escherichia coli directs division to the centre of the cell
through pole-to-pole oscillations of the MinCDE proteins. We present a one
dimensional stochastic model of these oscillations which incorporates membrane
polymerisation of MinD into linear chains. This model reproduces much of the
observed phenomenology of the Min system, including pole-to-pole oscillations
of the Min proteins. We then apply this model to investigate the Min system
during cell division. Oscillations continue initially unaffected by the closing
septum, before cutting off rapidly. The fractions of Min proteins in the
daughter cells vary widely, from 50%-50% up to 85%-15% of the total from the
parent cell, suggesting that there may be another mechanism for regulating
these levels in vivo.Comment: 19 pages, 12 figures (25 figure files); published at
http://www.iop.org/EJ/journal/physbi
Property for noncommutative universal lattices
We establish a new spectral criterion for Kazhdan's property which is
applicable to a large class of discrete groups defined by generators and
relations. As the main application, we prove property for the groups
, where and is an arbitrary finitely generated
associative ring. We also strengthen some of the results on property for
Kac-Moody groups from a paper of Dymara and Januszkiewicz (Invent. Math 150
(2002)).Comment: 47 pages; final versio
The Morphological Characterization of Mechanically Activated ZnO Powder
The authors investigated the morphological characteristics of mechanically activated ZnO powder. ZnO powder was mechanically activated for 2, 5, 10 and 30 minutes in a planetary ball mill. Mechanical activation introduces lattice disorder and defects into ZnO hexagonal wurtzite structure. In order to determine specific surface area and pore volume, we performed N2 porosimetry and SEM in order to investigate the microstructure of non-activated and mechanically activated ZnO powders. Using Kubelka-Munk function, UV-Vis spectra showed the reducing in band gap with activation time. ZnO powder activated for 5 minutes has the narrowest band gap
Phase Synchronization Control of Robotic Networks on Periodic Ellipses with Adaptive Network Topologies
This paper presents a novel formation control method for a large number of robots or vehicles described by Euler-Lagrange (EL) systems moving in elliptical orbits. A new
coordinate transformation method for phase synchronization of networked EL systems in elliptical trajectories is introduced to define desired formation patterns. The proposed phase synchronization controller synchronizes the motions of agents, thereby yielding a smaller synchronization error than an uncoupled control law in the presence of bounded disturbances. A complex time-varying and switching network topology, constructed by the
adaptive graph Laplacian matrix, relaxes the standard requirement of consensus stability, even permitting stabilization on an arbitrary unbalanced graph. The proofs of stability are constructed by robust contraction analysis, a relatively new nonlinear stability tool. An
example of reconfiguring swarms of spacecraft in Low Earth Orbit shows the effectiveness of the proposed phase synchronization controller for a large number of complex EL systems moving in elliptical orbits
Radiation sensitive MOSFETs irradiated with various positive gate biases
The RADiation sensitive metal-oxide-semiconductor field-effect-transistors (RADFETs) were irradiated with gamma rays up to absorbed dose of 110 Gy(H2O). The results of threshold voltage, VT, during irradiation with various positive gate biases showed the increase in VT with gate bias. The threshold voltage shift, ΔVT, during irradiation was fitted very well. The contributions of both the fixed traps (FTs) and switching traps (STs) during radiation on ΔVT were analyzed. The results show the significantly higher contribution of FTs than STs. A function that describes the dependence of threshold voltage shift and its components on gate bias was proposed, which fitted the experimental values very well. The annealing at the room temperature without gate bias of irradiated RADFETs was investigated. The recovery of threshold voltage, known as fading, slightly increase with the gate bias applied during radiation. The ΔVT shows the same changes as the threshold voltage component due to fixed states, ΔVft, while there is no change in the threshold voltage component due to switching traps, ΔVst
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft
Structural characterization of mechanically activated MgO-TiO2 system
Mixtures of MgO-TiO2 powders were mechanically activated in a planetary ball mill for time interval from 0 to 120 minutes. On thus obtained powders, structural investigations have been performed. N2 adsorption method was used to determine the BET specific surface area and pore size distribution. Unusual results are obtained: specific surface area continuously decreases up to 40 minutes of activation and after that increases, reaching its minimum value of 4.4 m2/g. The influence of mechanical activation on lattice vibrational spectra was examined by Raman spectroscopy at room temperatures. The differential thermal analysis has been performed in order to investigate thermal behavior of the mixtures, indicating at several endothermal peaks in range of RT to 1100oC. SEM gave information about changes in microstructures, showing the clear decrease in particle size
Collective and broken pair states of 65,67Ga
Excited states of 65Ga and 67Ga nuclei were populated through the 12C(58Ni,αp) and 12C(58Ni,3p) reactions, respectively, and investigated by in-beam γ-ray spectroscopic methods. The NORDBALL array equipped with a charged particle ball and 11 neutron detectors was used to detect the evaporated particles and γ rays. The level schemes of 65,67Ga were constructed on the basis of γγ-coincidence relations up to 8.6 and 10 MeV excitation energy, and Iπ=27/2 and 33/2+ spin and parity, respectively. The structure of 65,67Ga nuclei was described in the interacting boson-fermion plus broken pair model, including quasiproton, quasiproton-two-quasineutron, and three-quasiproton fermion configurations in the boson-fermion basis states. Most of the states were assigned to quasiparticle + phonon and three quasiparticle configurations on the basis of their electromagnetic decay properties
Structural investigation of mechanically activated ZnO powder
Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation
Apparent Temperature and Air Pollution vs. Elderly Population Mortality in Metro Vancouver
Background: Meteorological conditions and air pollution in urban environments have been associated with general population and elderly mortality, showing seasonal variation. Objectives: This study is designed to evaluate the relationship between apparent temperature (AT) and air pollution (PM2.5) vs. mortality in elderly population of Metro Vancouver. Methods: Statistical analyses are performed on moving sum daily mortality rates vs. moving average AT and PM 2.5 in 1-, 2-, 3-, 5-, and 7-day models for all seasons, warm temperatures above 15uC, and cold temperatures below 10uC. Results: Approximately 37 % of the variation in all-season mortality from circulatory and respiratory causes can be explained by the variation in 7-day moving average apparent temperature (r 2 = 0.37, p,0.001). Although the analytical results from air pollution models show increasingly better prediction ability of longer time-intervals (r 2 = 0.012, p,0.001 in a 7-day model), a very weak negative association between elderly mortality and air pollution is observed. Conclusions: Apparent temperature is associated with mortality from respiratory and circulatory causes in elderly population of Metro Vancouver. In a changing climate, one may anticipate to observe potential health impacts from the projected high- and particularly from the low-temperature extremes
- …