102 research outputs found

    Pedestrian index theorem a la Aharonov-Casher for bulk threshold modes in corrugated multilayer graphene

    Full text link
    Zero-modes, their topological degeneracy and relation to index theorems have attracted attention in the study of single- and bilayer graphene. For negligible scalar potentials, index theorems explain why the degeneracy of the zero-energy Landau level of a Dirac hamiltonian is not lifted by gauge field disorder, for example due to ripples, whereas other Landau levels become broadened by the inhomogenous effective magnetic field. That also the bilayer hamiltonian supports such protected bulk zero-modes was proved formally by Katsnelson and Prokhorova to hold on a compact manifold by using the Atiyah-Singer index theorem. Here we complement and generalize this result in a pedestrian way by pointing out that the simple argument by Aharonov and Casher for degenerate zero-modes of a Dirac hamiltonian in the infinite plane extends naturally to the multilayer case. The degeneracy remains, though at nonzero energy, also in the presence of a gap. These threshold modes make the spectrum asymmetric. The rest of the spectrum, however, remains symmetric even in arbitrary gauge fields, a fact related to supersymmetry. Possible benefits of this connection are discussed.Comment: 6 pages, 2 figures. The second version states now also in words that the conjugation symmetry that in the massive case gets replaced by supersymmetry is the chiral symmetry. Changes in figure

    Coexistence of electron and hole transport in graphene

    Get PDF
    When sweeping the carrier concentration in monolayer graphene through the charge neutrality point, the experimentally measured Hall resistivity shows a smooth zero crossing. Using a two- component model of coexisting electrons and holes around the charge neutrality point, we unambiguously show that both types of carriers are simultaneously present. For high magnetic fields up to 30 T the electron and hole concentrations at the charge neutrality point increase with the degeneracy of the zero-energy Landau level which implies a quantum Hall metal state at \nu=0 made up by both electrons and holes.Comment: 5 pages, 6 figure

    Video Use and the Student Learning Experience in Politics and International Relations

    Get PDF
    This article explores video use and the student learning experience in Politics and International Relations (IR). The study brings together and builds on two extant literatures – on deep learning and visual literacy – in order to explore how students make use of three types of video: lecture summaries, current affairs clips and fictional television. Questionnaire and focus group data generate a nuanced picture, with distinct implications for the learning experience. The article shows how different types of video can be linked to the development of different skills for different students

    1/f noise in magnetic Ni80Fe20 single layers and Ni80Fe20/Cu multilayers

    Get PDF
    We have investigated the room temperature 1/f noise of microstructured soft magnetic Ni80Fe20 films, showing the anisotropic magnetoresistance effect, and of Ni80Fe20/Cu magnetic multilayers, showing the giant magnetoresistance effect. We find that the 1/f noise in magnetic multilayers is considerably enhanced with respect to the noise of the single domain layer, which sets a limit on the usability of giant magnetoresistance materials for low-frequency applications

    Influence of SiO2 micro-particles onto microstructure, mechanical properties and wear resistance of uhmwpe based composite under dry sliding friction

    Get PDF
    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8O3 as a ferroelectric insulator, and SrRuO3 as a gate electrode, each layer prepared by pulsed laser deposition. The hysteresis behavior of the channel conductance is studied. Using gate voltage pulses of 100 µs duration and a pulse height of ±3 V, a change of a factor of two in the remnant conductance is achieved. The dependence of the conductance on the polarity of the gate pulse proves that the memory effect is driven by the ferroelectric polarization. The influence of charge trapping is also observed and discussed. © 1996 American Institute of Physics

    Tilted-Cone Induced Cusps and Nonmonotonic Structures in Dynamical Polarization Function of Massless Dirac Fermions

    Full text link
    The polarization function of electrons with the tilted Dirac cone found in organic conductors is studied using the tilted Weyl equation. The dynamical property is explored based on the analytical treatment of the particle-hole excitation. It is shown that the polarization function as the function of both the frequency and the momentum exhibits cusps and nonmonotonic structures. The polarization function depends not only on the magnitude but also the direction of the external momentum. These properties are characteristic of the tilted Dirac cone, and are contrast to the isotropic case of grapheme. Further, the results are applied to calculate the optical conductivity, the plasma frequency and the screening of Coulomb interaction, which are also strongly influenced by the tilted cone.Comment: 28 pages, 12 figures, to be published in Journal of the Physical Society of Japan Vol. 79 (2010) No. 1

    Towards Graphene Nanoribbon-based Electronics

    Full text link
    The successful fabrication of single layer graphene has greatly stimulated the progress of the research on graphene. In this article, focusing on the basic electronic and transport properties of graphene nanoribbons (GNRs), we review the recent progress of experimental fabrication of GNRs, and the theoretical and experimental investigations of physical properties and device applications of GNRs. We also briefly discuss the research efforts on the spin polarization of GNRs in relation to the edge states.Comment: 9pages,10figure

    Students’ Motivation for Learning in Virtual Learning Environments

    Get PDF
    The specific characteristics of online education require of the student engagement and autonomy, factors which are related to motivation for learning. This study investigated students’ motivation in virtual learning environments (VLEs). For this, it used the Teaching and Learning Strategy and Motivation to Learn Scale in Virtual Learning Environments (TLSM-VLE). The scale presented 32 items and six dimensions, three of which aimed to measure the variables of autonomous motivation, controlled motivation, and demotivation. The participants were 572 students from the Brazilian state of Paraná, enrolled on higher education courses on a continuous education course. The results revealed significant rates for autonomous motivational behavior. It is considered that the results obtained may provide contributions for the educators and psychologists who work with VLEs, leading to further studies of the area providing information referent to the issue investigated in this study
    corecore