Секция 1 – Технологии материалов новых поколений и наноматериалов

INFLUENCE OF SIO₂ MICRO-PARTICLES ONTO MICROSTRUCTURE, MECHANICAL PROPERTIES AND WEAR RESISTANCE OF UHMWPE BASED COMPOSITE UNDER DRY SLIDING FRICTION

Noppanuch Puangmalee^{1,a*}, Narongrit Sonjaitham^{2,b}, Setthawit Saengthip^{1,c}, Noppanan mungnuae^{1,d}, Surachade Solklin^{3,e} and Surat Wannasri^{3,f}

¹Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University 1061 Isaraphab Rd., Dhonburi, Bangkok, Thailand, 10600

²Faculty of Industrial Technology and Management, King Mongut's University of Technology North

Bangkok, Prachinburi Campus, 129, T. Noenhom, A. Muang, Prachinburi, Thailand, 25230

³Faculty of Engineering and Architecture, Rajamangala University of Technology Isan,

744 Suranarai Rd., T. Nai-muang, A. Muang, Nakhon Ratchasima, Thailand, 30000.

^ap_puangmalee@hotmail.com, ^bnarongrit.s@fitm.kmutnb.ac.th, ^c<u>witkub@hotmail.com</u>,

^ddown_31@hotmail.com, ^esurachade@hotmail.com and ^fswanasri_1@hotmail.com

Keywords: UHMWPE, SiO₂, microstructure, mechanical properties, wear resistance.

Abstract. This research investigated the influence of silicon dioxide (SiO₂) with particle size of 5 micron on microstructure, mechanical properties and wear resistance of UHMWPE polymeric composite materials under dry sliding friction that was tested by Block-on-ring technique according to ASTM G77. Bulk UHMWPE composite specimen was reinforced with SiO₂ particles by weight fraction of 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4 and 5 wt.%. Specimen was performed by hot compression process with the compression forming conditions at the temperature of 202.11°C, pressure of 9.73 MPa and exposure time of 76.97 minutes. It was found that, SiO₂ has the potential to cause cross-linking in the molecular chain of polymers and affect in increased crystallinity and density. For the case of the microstructure, SiO₂ particle fraction in the range of not more than 0.5 wt.% did not effect to change microstructure of the specimen which Its microstructure did not significantly different from the pure UHMWPE specimen due to SiO_2 particle was dispersed uniformly in the UHMWPE matrix. Its microstructure appeared in a lamellar form or flake pattern. However, the increasing of SiO₂ more than 0.5 wt.% effect to changed microstructure due to the increased SiO_2 particles separated from the matrix and accumulation at the grain boundary of UHMWPE powder particles. For the case of mechanical and wear resistance properties, the increasing of SiO₂ particle of 1 wt.% affect to increased various mechanical properties to have a maximum value and decreased wear rate to minimum value of $5.10 \times 10^{-11} \pm 1.26 \times 10^{-11}$ mm³/Nm. After that, the increasing of SiO₂ particle effect to decreased mechanical and wear resistance properties except for the hardness that continuously increased according to the increasing of SiO₂.