359 research outputs found

    The effects of surface stripping ZnO nanorods with argon bombardment

    Get PDF
    ZnO nanorods are used in devices including field effects transistors, piezoelectric transducers, optoelectronics and gas sensors. However, for efficient and reproducible device operation and contact behaviour, surface contaminants must be removed or controlled. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanorods allowing intrinsic surface measurements through a cross section of the material. Photoluminescence finds that the defect distribution is higher at the near-surface, falling away in to the bulk. Contacts to the n-type defect-rich surface are near-Ohmic, whereas stripping away the surface layers allows more rectifying Schottky contacts to be formed. The ability to select the contact type to ZnO nanorods offers a new way to customize device behaviour

    A Three-Sample Study of Perfectionism and Field Test Performance in Athletes.

    Get PDF
    Field tests are commonly used by sport scientists for performance monitoring and evaluation. While perfectionism predicts performance in a range of contexts, it is currently unclear whether perfectionism predicts performance in such tests. To address this lack of understanding, the present study examined the relationships between perfectionism and fitness-based field test performance across three athlete samples. After completing a measure of perfectionism (striving for perfection and negative reactions to imperfection), sample one (n = 129 student athletes) participated in a series of countermovement jumps and 20-metre sprint trials, sample two (n = 136 student athletes) participated in an agility task, and sample three (n = 116 junior athletes) participated in the Yo-Yo intermittent recovery test (level one). Striving for perfection predicted better sprint and Yo-Yo test performance. Negative reactions to imperfection predicted worse sprint performance. Mini meta-analyses of the combined data (N = 381) showed that striving for perfection was positively related to performance (r+ = .24), but negative reactions to imperfection was unrelated to performance (r+ = -.05). The present findings indicate that striving for perfection may predict better fitness-based field test performance, while negative reactions to imperfection appears to be ambiguous

    Effects of Vacuum Annealing on the Conduction Characteristics of ZnO Nanosheets

    Get PDF
    This paper is open acess and available in full at http://www.nanoscalereslett.com/content/10/1/368 .ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM), photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance increased and became less linear with probe separation. These effects need to be taken into account when using ZnO nanosheets in devices that require an annealing stage during fabrication or heating during use

    Scaffolding development and the human condition

    Get PDF
    This paper addresses the concept of semiotic scaffolding by considering it in light of questions arising from the contemporary challenge to the humanities. This challenge comes from a mixture of scientistic demands, opportunism on the part of Western governments in thrall to neo-liberalism, along with crass economic utilitarianism. In this paper we attempt to outline what a theory of semiotic scaffolding may offer to an understanding of the humanities’ contemporary role, as well as what the humanities might offer to the elucidation of semiotic scaffolding. We argue that traditional humanist positions adopted in defence of the humanities fail to articulate the enhancement of humanity that semiotic scaffolding represents. At the same time, we note that the concept of scaffolding is sometimes in danger of taking on a functionalist perspective which understanding the humanities modus operandi is likely to dispel. Putting forward these arguments, we draw on the work of Peirce, Cassirer and Sebeok in elucidating the structural and ‘future-orientated’ benefits of the scaffolding process as it suffuses the humanities

    UKPMC: a full text article resource for the life sciences

    Get PDF
    UK PubMed Central (UKPMC) is a full-text article database that extends the functionality of the original PubMed Central (PMC) repository. The UKPMC project was launched as the first ‘mirror’ site to PMC, which in analogy to the International Nucleotide Sequence Database Collaboration, aims to provide international preservation of the open and free-access biomedical literature. UKPMC (http://ukpmc.ac.uk) has undergone considerable development since its inception in 2007 and now includes both a UKPMC and PubMed search, as well as access to other records such as Agricola, Patents and recent biomedical theses. UKPMC also differs from PubMed/PMC in that the full text and abstract information can be searched in an integrated manner from one input box. Furthermore, UKPMC contains ‘Cited By’ information as an alternative way to navigate the literature and has incorporated text-mining approaches to semantically enrich content and integrate it with related database resources. Finally, UKPMC also offers added-value services (UKPMC+) that enable grantees to deposit manuscripts, link papers to grants, publish online portfolios and view citation information on their papers. Here we describe UKPMC and clarify the relationship between PMC and UKPMC, providing historical context and future directions, 10 years on from when PMC was first launched

    Closed-Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes

    Get PDF
    International audienceIn the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ever-increasing accumulation of electronic waste, e-waste, in the environment. This work is targeting copper, the most abundant metal in e-waste that represents up to 20% by weight of printed circuit boards (PCBs). In the first stage, bioleaching was tested for different pulp densities (0.25–1.00% w/v) and successfully used to extract multiple metals from PCBs using the acidophilic bacterium, Acidithiobacillus ferrooxidans. In the second stage, the method focused on the recovery of copper from the bioleachate by electrowinning. Metallic copper foils were formed, and the results demonstrated that 75.8% of copper available in PCBs had been recovered as a high quality copper foil, with 99 + % purity, as determined by energy dispersive X-ray analysis and Inductively-Coupled Plasma Optical Emission Spectrometry. This model of copper extraction, combining bioleaching and electrowinning, demonstrates a closed-loop method of recycling that illustrates the application of bioleaching in the circular economy. The copper foils have the potential to be reused, to form new, high value copper clad laminate for the production of complex printed circuit boards for the electronics manufacturing industry. Graphic Abstract: [Figure not available: see fulltext.] © 2020, The Author(s)

    Communication for Peaceful Social Change and Global Citizenry

    Get PDF
    The adoption of the 17 Sustainable Development Goals (SDGs) by the United Nations (UN) in 2015 represents a universal call to action involving multiple international actors for the purpose of eradicating poverty, improving living conditions and promoting peace. This entry provides a theoretical overview of the contributions of scholars and practitioners who highlight the importance of a transformative, educational and emancipatory communication by different social actors to establish the main lines of action for the 2030 Agenda for Sustainable Development. This communicative model involves the coordination of actors and strategies, both short- and long-term, cross-cutting actions and discourses to build social, cultural and political settings based on the criteria of peace, equality, social justice and human rights. Specifically, this entails a contribution to the objectives set out in SDG 16, “Peace, Justice and Strong Institutions”, given that the proposed theoretical framework is grounded in Communication for Peace and Communication for Social Change, and includes a systematization of different strategies and experiences from a variety of social issuers, mainly institutions, non-governmental organizations (NGOs) or social movements, aimed at promoting peaceful and inclusive societies. Specifically, communication for peaceful social change and global citizenry contributes to the achievement of specific SDG 16 objectives, particularly 16.1: Significantly reduce all forms of violence... [...

    General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts

    Get PDF
    Although Raney nickel made by dealloying has been used as a heterogeneous catalyst in a variety of organic syntheses for more than 80 years, only recently scientists have begun to realize that dealloying can generate nanoporous alloys with extraordinary structural characteristics. Herein, we achieved successful synthesis of a variety of monodisperse alloy nanoporous nanoparticles via a facile chemical dealloying process using nanocrystalline alloys as precursors. The as-prepared alloy nanoporous nanoparticles with large surface area and small pores show superior catalytic properties compared with alloyed nanoparticles. It is believed that these novel alloy nanoporous nanoparticles would open up new opportunities for catalytic applications
    • 

    corecore