112 research outputs found

    Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll like receptors (TLRs) signaling pathways, including the adaptor protein Mal encoded by the TIRAP gene, play a central role in the development of acute lung injury (ALI). Recently, the <it>TIRAP </it>variants have been described association with susceptibility to inflammatory diseases. The aim of this study was to investigate whether genetic variants in <it>TIRAP </it>are associated with the development of ALI.</p> <p>Methods</p> <p>A case-control collection from Han Chinese of 298 healthy subjects, 278 sepsis-associated ALI and 288 sepsis alone patients were included. Three tag single nucleotide polymorphisms (SNPs) of the TIRAP gene and two additional SNPs that have previously showed association with susceptibility to other inflammatory diseases were genotyped by direct sequencing. The differences of allele, genotype and haplotype frequencies were evaluated between three groups.</p> <p>Results</p> <p>The minor allele frequencies of both rs595209 and rs8177375 were significantly increased in ALI patients compared with both healthy subjects (odds ratio (OR) = 1.47, 95% confidence interval (CI):1.15-1.88, P = 0.0027 and OR = 1.97, 95% CI: (1.38-2.80), P = 0.0001, respectively) and sepsis alone patients (OR = 1.44, 95% CI: 1.12-1.85, P = 0.0041 and OR = 1.82, 95% CI: 1.28-2.57, P = 0.00079, respectively). Haplotype consisting of these two associated SNPs strengthened the association with ALI susceptibility. The frequency of haplotype AG (rs595209A, rs8177375G) in the ALI samples was significantly higher than that in the healthy control group (OR = 2.13, 95% CI: 1.46-3.09, P = 0.00006) and the sepsis alone group (OR = 2.24, 95% CI: 1.52-3.29, P = 0.00003). Carriers of the haplotype CA (rs595209C, rs8177375A) had a lower risk for ALI compared with healthy control group (OR = 0.69, 95% CI: 0.54-0.88, P = 0.0003) and sepsis alone group (OR = 0.71, 95% CI: 0.55-0.91, P = 0.0006). These associations remained significant after adjustment for covariates in multiple logistic regression analysis and for multiple comparisons.</p> <p>Conclusions</p> <p>These results indicated that genetic variants in the TIRAP gene might be associated with susceptibility to sepsis-associated ALI in Han Chinese population. However, the association needs to be replicated in independent studies.</p

    Common Variants of TLR1 Associate with Organ Dysfunction and Sustained Pro-Inflammatory Responses during Sepsis

    Get PDF
    Background: Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarker among septic patients. Methodology/Principal Findings: Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1 b, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001<=p <= 0.022), and with reduced IL-10 (0.012<= p <=0.047) and elevated CRP (0.011<= p <=0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p =0.017) and ALI (p =0.050) in a combined analysis with European Americans, suggesting common risk effects among studies Conclusions/Significance: These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis

    Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma

    Get PDF
    Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research

    Baicalin Improves Survival in a Murine Model of Polymicrobial Sepsis via Suppressing Inflammatory Response and Lymphocyte Apoptosis

    Get PDF
    BACKGROUND: An imbalance between overwhelming inflammation and lymphocyte apoptosis is the main cause of high mortality in patients with sepsis. Baicalin, the main active ingredient of the Scutellaria root, exerts anti-inflammatory, anti-apoptotic, and even antibacterial properties in inflammatory and infectious diseases. However, the therapeutic effect of baicalin on polymicrobial sepsis remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in C57BL/6 mice. Mice were infused with baicalin intraperitoneally at 1 h, 6 h and 12 h after CLP. Survival rates were assessed over the subsequent 8 days. Bacterial burdens in blood and peritoneal cavity were calculated to assess the bacterial clearance. Neutrophil count in peritoneal lavage fluid was also calculated. Injuries to the lung and liver were detected by hematoxylin and eosin staining. Levels of cytokines, including tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-10 and IL-17, in blood and peritoneum were measured by enzyme-linked immunosorbent assay. Adaptive immune function was assessed by apoptosis of lymphocytes in the thymus and counts of different cell types in the spleen. Baicalin significantly enhanced bacterial clearance and improved survival of septic mice. The number of neutrophils in peritoneal lavage fluid was reduced by baicalin. Less neutrophil infiltration of the lung and liver in baicalin-treated mice was associated with attenuated injuries to these organs. Baicalin significantly reduced the levels of proinflammatory cytokines but increased the level of anti-inflammatory cytokine in blood and peritoneum. Apoptosis of CD3(+) T cell was inhibited in the thymus. The numbers of CD4(+), CD8(+) T lymphocytes and dendritic cells (DCs) were higher, while the number of CD4(+)CD25(+) regulatory T cells was lower in the baicalin group compared with the CLP group. CONCLUSIONS/SIGNIFICANCE: Baicalin improves survival of mice with polymicrobial sepsis, and this may be attributed to its antibacterial property as well as its anti-inflammatory and anti-apoptotic effects

    Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease

    Get PDF
    An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis

    Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection

    Get PDF
    Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data

    Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation

    Get PDF
    SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore