347 research outputs found

    Trapping of electrons near chemisorbed hydrogen on graphene

    Full text link
    Chemical adsorption of atomic hydrogen on a negatively charged single layer graphene sheet has been analyzed with ab-initio Density Functional Theory calculations. We have simulated both finite clusters and infinite periodic systems to investigate the effect of different ingredients of the theory, e.g. exchange and correlation potentials, basis sets, etc. Hydrogen's electron affinity dominates the energetic balance in the charged systems and the extra electron is predominantly attracted to a region nearby the chemisorbed atom. The main consequences are: (i) the cancellation of the unpaired spin resulting in a singlet ground-state, and (ii) a stronger interaction between hydrogen and the graphene sheet.Comment: 11 pages, 8 figures, to be published in PR

    Magnetic molecules created by hydrogenation of Polycyclic Aromatic Hydrocarbons

    Full text link
    Present routes to produce magnetic organic-based materials adopt a common strategy: the use of magnetic species (atoms, polyradicals, etc.) as building blocks. We explore an alternative approach which consists of selective hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF) (Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations on coronene and corannulene, both hexa-hydrogenated, show that the formation of stable high spin species is possible. The spin of the ground states is discussed in terms of the Hund rule and Lieb's theorem for bipartite lattices (alternant hydrocarbons in this case). This proposal opens a new door to magnetism in the organic world.Comment: 6 pages, 4 figures and 2 table

    A Theoretical Study of the Reaction of Ti+ with Ethane

    Get PDF
    The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H+4+H2 and Ti++C2H6→TiCH+2+CH4reactions are studied using density functional theory(DFT) with the B3LYP functional and ab initiocoupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory

    Synthesis, Photochemical, and Redox Properties of Gold(I) and Gold(III) Pincer Complexes Incorporating a 2,2′:6′,2″-Terpyridine Ligand Framework

    Get PDF
    Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2′:6′,2″-terpyridine (terpy) leads to complex [Au(C6F5)(η1-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η3-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals that the terpyridine acts as tridentate chelate ligand, which leads to a slightly distorted square-planar geometry. Complex 1 displays fluorescence in the solid state at 77 K due to a metal (gold) to ligand (terpy) charge transfer transition, whereas complex 2 displays fluorescence in acetonitrile due to excimer or exciplex formation. Time-dependent density functional theory calculations match the experimental absorption spectra of the synthesized complexes. In order to further probe the frontier orbitals of both complexes and study their redox behavior, each compound was separately characterized using cyclic voltammetry. The bulk electrolysis of a solution of complex 1 was analyzed by spectroscopic methods confirming the electrochemical synthesis of complex 2
    corecore