86 research outputs found

    Using Cold Atoms to Measure Neutrino Mass

    Full text link
    We propose a beta decay experiment based on a sample of ultracold atomic tritium. These initial conditions enable detection of the helium ion in coincidence with the beta. We construct a two-dimensional fit incorporating both the shape of the beta-spectrum and the direct reconstruction of the neutrino mass peak. We present simulation results of the feasible limits on the neutrino mass achievable in this new type of tritium beta-decay experiment.Comment: 10 pages, 5 figure

    A unified earthquake catalogue for the North Sea to derisk European CCS operations

    Get PDF
    Carbon capture and storage (CCS) technology is essential to European decarbonisation efforts, and several offshore CO2 storage projects are being developed in the North Sea. Understanding the geomechanical response to CO2 injection is key to both the pre-characterisation and operation of a storage reservoir. A thorough assessment of seismicity gives critical insights into the stress field and faulting around reservoirs, both key controls on the geomechanical response to injection. Seismicity also illuminates potential hydraulic pathways for leakage, be it directly by revealing the extent of faults, or indirectly through fractures imaged by measurements of seismic anisotropy. High quality seismicity data is critical to underpin all of these methods of analysis. This paper presents the most complete catalogue of seismicity in the North Sea to date. The combined data are enabling revised assessments of seismic hazard and leakage risk in the North Sea, as well as a better understanding of faulting and stress. This study shows the value of unifying disparate seismicity data, allowing for more accurate seismological analyses. These lay the foundation for better management of risks for not only geologic CO2 storage, but other offshore industries and infrastructure

    Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory

    Get PDF
    We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory. By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25 \pm 0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5} eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino oscillation analysis combining this result with results of all other solar neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} = (7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} = 0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} = (2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.)

    Low Multiplicity Burst Search at the Sudbury Neutrino Observatory

    Get PDF
    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from Phase I (November 1999 - May 2001), when the detector was filled with heavy water, and Phase II (July 2001 - August 2003), when NaCl was added to the target. The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period.Comment: 11 pages, 4 figures, submitted to Ap

    Measurement of neutron production in atmospheric neutrino interactions at the Sudbury Neutrino Observatory

    Get PDF
    Neutron production in giga electron volt–scale neutrino interactions is a poorly studied process. We have measured the neutron multiplicities in atmospheric neutrino interactions in the Sudbury Neutrino Observatory experiment and compared them to the prediction of a Monte Carlo simulation using GENIEand a minimally modified version of GEANT4. We analyzed 837 days of exposure corresponding to Phase I, using pure heavy water, and Phase II, using a mixture of Cl in heavy water. Neutrons produced in atmospheric neutrino interactions were identified with an efficiency of 15.3% and 44.3%, for Phases I and II respectively. The neutron production is measured as a function of the visible energy of the neutrino interaction and, for charged current quasielastic interaction candidates, also as a function of the neutrino energy. This study is also performed by classifying the complete sample into two pairs of event categories: charged current quasielastic and non charged current quasielastic, and νμ and νe. Results show good overall agreement between data and Monte Carlo for both phases, with some small tension with a statistical significance below 2σ for some intermediate energies
    • …
    corecore