5,466 research outputs found

    Response of river-dominated delta channel networks to permanent changes in river discharge

    Get PDF
    Using numerical experiments, we investigate how river-dominated delta channel networks are likely to respond to changes in river discharge predicted to occur over the next century as a result of environmental change. Our results show for a change in discharge up to 60% of the initial value, a decrease results in distributary abandonment in the delta, whereas an increase does not significantly affect the network. However, an increase in discharge beyond a threshold of 60% results in channel creation and an increase in the density of the distributary network. This behavior is predicted by an analysis of an individual bifurcation subject to asymmetric water surface slopes in the bifurcate arms. Given that discharge in most river basins will change by less than 50% in the next century, our results suggest that deltas in areas of increased drought will be more likely to experience significant rearrangement of the delta channel network. Copyright 2010 by the American Geophysical Union

    Polarized entangled Bose-Einstein condensation

    Full text link
    We consider a mixture of two distinct species of atoms of pseudospin-1/2 with both intraspecies and Interspecies spin-exchange interactions, and find all the ground stats in a general case of the parameters in the effective Hamiltonian. In general, corresponding to the two species and two pseudo-spin states, there are four orbital wave functions into which the atoms condense. We find that in certain parameter regimes, the ground state is the so-called polarized entangled Bose-Einstein condensation, i.e. in addition to condensation of interspecies singlet pairs, there are unpaired atoms with spins polarized in the same direction. The interspecies entanglement and polarization significantly affect the generalized Gross-Pitaevskii equations governing the four orbital wave functions into which the atoms condense, as an interesting interplay between spin and orbital degrees of freedom.Comment: 14 pages, received by PRA on 27 October 201

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    X-ray Studies of Two Neutron Stars in 47 Tucanae: Toward Constraints on the Equation of State

    Full text link
    We report spectral and variability analysis of two quiescent low mass X-ray binaries (X5 and X7, previously detected with the ROSAT HRI) in a Chandra ACIS-I observation of the globular cluster 47 Tuc. X5 demonstrates sharp eclipses with an 8.666+-0.01 hr period, as well as dips showing an increased N_H column. The thermal spectra of X5 and X7 are well-modeled by unmagnetized hydrogen atmospheres of hot neutron stars. No hard power law component is required. A possible edge or absorption feature is identified near 0.64 keV, perhaps an OV edge from a hot wind. Spectral fits imply that X7 is significantly more massive than the canonical 1.4 \Msun neutron star mass, with M>1.8 \Msun for a radius range of 9-14 km, while X5's spectrum is consistent with a neutron star of mass 1.4 \Msun for the same radius range. Alternatively, if much of the X-ray luminosity is due to continuing accretion onto the neutron star surface, the feature may be the 0.87 keV rest-frame absorption complex (O VIII & other metal lines) intrinsic to the neutron star atmosphere, and a mass of 1.4 \Msun for X7 may be allowed.Comment: 16 pages, 7 figures, accepted by Ap

    Fast Decoders for Topological Quantum Codes

    Full text link
    We present a family of algorithms, combining real-space renormalization methods and belief propagation, to estimate the free energy of a topologically ordered system in the presence of defects. Such an algorithm is needed to preserve the quantum information stored in the ground space of a topologically ordered system and to decode topological error-correcting codes. For a system of linear size L, our algorithm runs in time log L compared to L^6 needed for the minimum-weight perfect matching algorithm previously used in this context and achieves a higher depolarizing error threshold.Comment: 4 pages, 4 figure

    Configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions

    Get PDF
    The framework of relativistic energy density functionals is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The effects of triaxial deformation and of KK-mixing is illustrated in a study of spectroscopic properties of low-spin states in 24^{24}Mg.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in Phys. Rev.

    Node-balancing by edge-increments

    Get PDF
    Suppose you are given a graph G=(V,E)G=(V,E) with a weight assignment w:VZw:V\rightarrow\mathbb{Z} and that your objective is to modify ww using legal steps such that all vertices will have the same weight, where in each legal step you are allowed to choose an edge and increment the weights of its end points by 11. In this paper we study several variants of this problem for graphs and hypergraphs. On the combinatorial side we show connections with fundamental results from matching theory such as Hall's Theorem and Tutte's Theorem. On the algorithmic side we study the computational complexity of associated decision problems. Our main results are a characterization of the graphs for which any initial assignment can be balanced by edge-increments and a strongly polynomial-time algorithm that computes a balancing sequence of increments if one exists.Comment: 10 page

    Noncommuting spherical coordinates

    Get PDF
    Restricting the states of a charged particle to the lowest Landau level introduces a noncommutativity between Cartesian coordinate operators. This idea is extended to the motion of a charged particle on a sphere in the presence of a magnetic monopole. Restricting the dynamics to the lowest energy level results in noncommutativity for angular variables and to a definition of a noncommuting spherical product. The values of the commutators of various angular variables are not arbitrary but are restricted by the discrete magnitude of the magnetic monopole charge. An algebra, isomorphic to angular momentum, appears. This algebra is used to define a spherical star product. Solutions are obtained for dynamics in the presence of additional angular dependent potentials.Comment: 5 pages, RevTex4 fil

    Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap

    Full text link
    We present a perturbative reconstruction method to make a skymap of gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In the presence of anisotropies in GWBs, the cross-correlated signals of observed GWBs are inherently time-dependent due to the non-stationarity of the gravitational-wave detector. Since the cross-correlated signal is obtained through an all-sky integral of primary signals convolving with the antenna pattern function of gravitational-wave detectors, the non-stationarity of cross-correlated signals, together with full knowledge of antenna pattern functions, can be used to reconstruct an intensity map of the GWBs. Here, we give two simple methods to reconstruct a skymap of GWBs based on the perturbative expansion in low-frequency regime. The first one is based on harmonic-Fourier representation of data streams and the second is based on "direct" time-series data. The latter method enables us to create a skymap in a direct manner. The reconstruction technique is demonstrated in the case of the Galactic gravitational wave background observed via planned space interferometer, LISA. Although the angular resolution of low-frequency skymap is rather restricted, the methodology presented here would be helpful in discriminating the GWBs of galactic origins by those of the extragalactic and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres

    Semi-relativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model

    Get PDF
    The so-called semi-relativistic expansion of the weak charged current in powers of the initial nucleon momentum is performed to describe charge-changing, quasielastic neutrino reactions (νμ,μ)(\nu_\mu,\mu^-) at intermediate energies. The quality of the expansion is tested by comparing with the relativistic Fermi gas model using several choices of kinematics of interest for ongoing neutrino oscillation experiments. The new current is then implemented in a continuum shell model together with relativistic kinematics to investigate the scaling properties of (e,e)(e,e') and (νμ,μ)(\nu_\mu,\mu^-) cross sections.Comment: 33 pages, 10 figures, to appear in PR
    corecore