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The so-called semirelativistic expansion of the weakly charged current in powers of the initial nucleon
momentum is performed to describe charge-changing, quasielastic neutrino reactions (v,,, ;=) at intermediate
energies. The quality of the expansion is tested by comparing it with the relativistic Fermi gas model using
several choices of kinematics of interest for ongoing neutrino oscillation experiments. The new current is then
implemented in a continuum shell model together with relativistic kinematics to investigate the scaling properties

of (e, ¢’) and (v, u™) cross sections.
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I. INTRODUCTION

The importance of neutrino-induced reactions in nuclei
has been stressed in connection with the neutrino oscilla-
tion experiments performed by the KARMEN and LSND
Collaborations [1-8]. In experiments of this type, relatively
low v, or v, energies are involved (at most a few hundreds of
MeV), and so the nuclear excitations involved can be described
by standard nonrelativistic models of the reaction including
the relevant machinery random-phase-approximation (RPA)
correlations, large-basis shell models, A-hole excitations,
final-state interactions, etc. for this energy regime, where in
particular giant resonances may play an important role [9—16].

However, when passing to the ongoing and next generation
of neutrino experiment, MiniBooNE, K2K/T2K, MINOS,
NOvA, and MINERvA [17-22], the neutrino beam energies
increase to the GeV level, and typically large energies and
momenta are transferred to the nucleus. For these kinematics,
relativity is important and nonrelativistic models of the
reaction such as those listed above are bound to fail unless
the relevant relativistic ingredients are included.

First of all, the use of relativistic kinematics is required and
must be implemented in the model. From quasielastic (QE)
electron scattering studies we know that a good approximation
to the correct kinematics consists in the substitution

A —> A1+ ), (D

with A = w/2my, where w is the energy transfer and my the
nucleon mass. This substitution can easily be performed in all
places in the calculation—except in the nucleon form factors,
where the correct value of momentum transfer Q* = (w, q)
must be used. Second, a good approximation to the current ma-
trix elements is required. The current is traditionally obtained
from the fully relativistic one by some expansion procedure,
usually through the Foldy-Wouthuysen (FW) transformation,
which is valid for small momenta compared to the nucleon
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mass. Within this procedure, relativistic effects were studied
for neutrino energies up to 300 MeV in [23], showing that
a good agreement is obtained between fully relativistic and
non relativistic Fermi gas calculations, when terms up to
order (g/my)* are included in the latter. Similar results were
obtained at larger energies, for the scattering of atmospheric
neutrinos from oxygen [24], where, however, it must be noted
that because of the steep decrease of the atmospheric neutrino
spectrum at large energies (see, for example, [25]), the most
important contributions to the process correspond to relatively
small energy transfers. Obviously, the Foldy-Wouthuysen
expansion is not applicable to the high values of the momentum
transfer ¢ which are of interest to the new experiments, i.e., for
values around 1 GeV/c. In this case, a different expansion
procedure must be performed in which ¢ and w can be
arbitrarily large.

Thus, the first goal of this paper is to develop an approx-
imation to the nuclear charged current (CC) that accounts
for specific relativistic effects relevant to intermediate-energy
quasielastic neutrino reactions. The CC is obtained here
through an expansion that only requires the momentum of
the initial nucleon to be small, while it treats exactly the
dependence on (w, q). Moreover, the resulting semirelativistic
(SR) current is simple enough to be easily implemented in
already existing nonrelativistic models of (v, [™) and (v;, [1)
reactions, where / = e or . It is presented here as an extension
of the electromagnetic and weak-neutral current expansion
originally derived in [26] and that in recent years has been
widely tested and applied in several Collaborations to describe
a wide variety of inclusive and exclusive electron scattering
observables for intermediate energies and excitations in the
vicinity of the QE peak [27-37]. Extensions of the SR
expansion to meson-exchange currents have also been devel-
oped [38,39], and a detailed description of their application
to two-body currents can be found in a recent review
article [40].
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In this paper, we apply the SR model to neutrino-induced
reactions, for the first time. Apart from the different isospin
dependence, the SR expansion coincides essentially with that
of the weak neutral current performed in [26]. The only
difference is that in the present reaction, we have to include the
time component of the axial-vector current. That component
was not considered in [26] because it does not contribute
significantly to parity-violating electron scattering.

We check the quality of the SR expansion in the context
of the relativistic Fermi gas (RFG) model. This is a very
convenient model for our purposes, since it is fully relativistic
and simple enough to be solved exactly. Also this model
is capable of getting the basic size and shape of the QE
(e, €’) cross section. Thus we will show that starting from
the nonrelativistic Fermi gas, performing the replacement in
Eq. (1) in the kinematics, and implementing the new SR
charged current, we reproduce basically the RFG results for
(v, u7) reactions. This “relativizing” procedure can easily
be extrapolated to more sophisticated finite nuclei models of
the reaction. The result will at least reproduce appropriately
the allowed kinematical region and the relevant relativistic
content of the current operator. Of course, features related to
the relativistic aspects of the dynamics cannot be accounted
for by our procedure. In context we note that studies of
relativistic nuclear dynamics in charged and neutral-current
neutrino-nucleus QE scattering have already been presented
in some previous work [41-45]. In these studies, a basic focus
was to analyze the effects introduced by various descriptions
of the final nucleon relativistic states upon the integrated cross
sections.

We illustrate the relativizing procedure by applying it to the
continuum shell model (CSM), i.e., nucleons in a mean field
taken here to be a Woods-Saxon potential. We use the same
(real) potential for initial and final states in order to maintain
orthogonality between nuclear states. In this way, we extend
the SR shell model of [26] to neutrino reactions at the QE peak.
Since the use of relativistic kinematics is potentially equivalent
to solving a Klein-Gordon equation, the present SR continuum
shell model includes some aspects of a relativistic mean field.

With such a model, we are in a position to fulfill the
second goal of this paper, which is to investigate superscaling
properties of both (e, ¢’) and (v,,, 1) inclusive cross sections
at the QE peak for intermediate energies, namely, the degree to
which one finds that the reduced cross sections are independent
of the momentum transfer (scaling of the first kind) or
the nuclear species (scaling of the second kind) or both
(superscaling). Exhaustive analyses of the (e, ¢’) world data
and explorations of various aspects of their scaling properties
have been performed in [46-52]. In particular, in recent work
[53], the approach has been extended to the A peak, allowing
one to construct a semiempirical model based on scaling which
is very successful in describing the experimental (e, ¢’) cross
section up to the A peak for high energies. This model allowed
us in [53] to generate predictions for the (v, ™) cross section,
under the reasonable hypothesis that it presents, for high
energies, scaling properties similar to those of the (e, ') cross
section. This hypothesis is true by construction in the RFG
and can be also demonstrated at least for the conventional
plane-wave impulse approximation (PWIA) in the high ¢
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limit.! However, when distortion of the ejected nucleon is
present, a general proof of scaling cannot be provided, while
for lower energies, it is clear that the axial-vector and vector
matrix elements are renormalized differently in the nuclear
medium because of RPA correlations, and this can obviously
modify the scaling properties of the neutrino cross section. For
higher energies, one expects that nuclear effects such as from
RPA correlations are less important than at low energies. In this
work, we use the SR shell model to investigate the degree of
violation of the scaling hypothesis for the QE peak region
within the distorted-wave impulse approximation (DWIA),
where the distortion of the ejected nucleon is described
with a real potential. We perform this study in two steps.
First we focus on the (e, ¢’) cross section and study the
scaling properties of the separate response functions. Once the
superscaling has been verified for electromagnetic processes,
we are able to reconstruct the (v, ™) cross section from the
(e, €') one using the scaling hypothesis and compare it with
the one computed directly using the SR shell model. Thus, at
least within the context of the SR shell model discussed in
the present work, following this procedure we shall be able to
check the consistency of our approach and quantify the degree
to which scale breaking effects are expected to enter. As we
shall see below, there appears to be very little impact from this
source of scale breaking on the scaling approach used in [53]
to predict neutrino-induced cross sections.

The paper is organized in the following way. In Sec. II
we begin with a brief review of the general formalism for
neutrino scattering and present the expansion of the CC. We
particularize the formalism for the shell model and intro-
duce the general multipole expansion of the responses, with
some details on the derivation of the Coulomb multipoles of the
axial-vector current placed in Appendix A. We also provide
the expressions for the factorized PWIA in Appendix B. In
Sec. III, we present results for the (v,,, ™) reaction for several
choices of kinematics and several nuclei of interest. We first
perform an analysis of the quality of the relativizing procedure
by comparison with the RFG for the relevant kinematics (the
RFG model is further discussed in Appendix C.) The quality
of the various components of the SR current can be checked
separately by examining the individual response functions that
contribute to the process. We then focus on the SR shell
model and perform the scaling analysis of the longitudinal
and transverse electromagnetic responses as functions of the
momentum transfer for various nuclei. We apply the scaling
hypothesis to reconstruct the (v, u™) cross section starting
from the electromagnetic scaling function and compare, our
findings with the shell model results. Finally, in Sec. IV we
present our conclusions.

II. FORMALISM

In this section, we briefly present the basic formalism for
neutrino-induced reactions. Some of the previous approaches

"However, this is broken to some degree by the relativistic PWIA,
where factorization no longer obtains.
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to the general formalism for these reactions can be found
in [41,54-57].

A. Charge-changing neutrino cross section

Here we focus on the particular case of (v, u™), while
the cases of antineutrinos or other lepton species can be
easily obtained with obvious changes. The four momenta of
the incident neutrino and detected muon are k* = (¢, k) and
k'* = (¢', k), respectively. The four-momentum transfer is
Ot = k* — k'* = (w, q). We use a coordinate system with
the z axis pointing along q and the x axis along the transverse
component of the incident momentum, i.e., k* =k — #(k .
q)q. We follow the formalism of [53], where the cross section
is written as

do

——— =0y F;, 2
dvde % @
with
G? cos? 6, 6
0y = %k%/ cos? 3 3)

Here G = 1.166 x 107! MeV~2 is the Fermi constant, 6. 1s
the Cabibbo angle, cos 6, = 0.975, and the angle 6 is defined
as

g 2

A L — 4

2 (e+€)—g?
with Q% = ®* — ¢* < 0. The nuclear structure information is
contained in .7-"J2r, defined by

Fr = VeeRee +2Ver Rer + ViuRi + Ve Ry + 2V Ry,
. &)
where the kinematical factors Vg coming from the leptonic
tensor are defined by

Vee = 1 — 8% tan? > (6)
~ w 82 2 ]
Voo = — + — tan” @)
qg P 2
7 o’ @ 2\ 2,20
VLL——2+ 1+—,+,05 8° tan 5 8)
AL L?) tant 2 )
=tan“"—+=-——|—+= an” —
T 2 T2 T 2,0,0 7
~ 1 ' 6
Vp o= — (1 _ %52> tan? =, (10)
o q 2
In Egs. (6)—(10), following [53], we have defined
m/
§= ) (11)
10|
10?|
p="5 (12)
q
/ q
= . 13
P= e (13)
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Note that the only dependence on the muon mass m’ is
contained in the § coefficient.
Finally, the weak response functions are given by

Rec = W%, (14)
ReL = —3(W + W), (15)
Ry =W?», (16)
Ry = w4+ W22, a17)
Ry = —5(W"2 — w2, (18)

in terms of the inclusive hadronic tensor [54]

W (g, w) = E S(Ef — E;i — o) fIT“(OINI)(fIT"(Q)]i).
fi
(19)

In Eq. (19), J#(Q) is the hadronic CC current operator, to be
specified below, and a sum over final states and an average
over initial spin is assumed.

B. Semirelativistic charge-changing current

We begin with the basic relativistic charged weak current
of the nucleon, j* = j;; — j4. In this work, we employ only
the standard model of electroweak interactions at tree level
and thus, for example, do not include radiative corrections or
contributions from second-class currents (see [54]). We use
the conventions of [58]. The vector and axial-vector currents
are given by
4

F
Jv @, P)—u(p)[ZFVV +tis 0’”Q }u(p), (20)

i

0
Ji®@'.p) =u@P) |:GAV + GP2 Y u(p), 21
where for the isovector nucleon form factors F. L2 = = (F! 12—
F{',)/2 we use the Galster parametrization [59], and u(p) is
the free Dirac spinor of the nucleon. The axial-vector and
pseudoscalar form factors are parametrized as

84

Gp=—>——, 22

A oM (22)
4mN

Gp: Q2GA’ 23)

with g4 = 1.26, M4 = 1032 MeV.

The SR approximation to this current is then obtained
by inserting the appropriate free spinors u(p), u(p’), and
y matrices, and performing an expansion in powers of
n = p/my to first order. The procedure was developed in
[26,38,40] for the electromagnetic and transverse neutral,
vector, and axial-vector currents and is based on the fact
that inside the nucleus |g| is a good expansion para-
meter, the characteristic dimensionless nuclear scale being
nr = krp/my =~ 1/4. We exploit QE kinematics, while further
reasonable simplifications are eventually needed in order to
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arrive at simple expressions that are easily implementable in
traditional nonrelativistic calculations. For the vector current,
we use the following SR approximation:

Jy) =& + i)k x ) -0, (24)
Iy =&n* +ikjo xk, (25)
where
K , 2GY — GV
& = —=2Gy, & =—"YL_—F (26)

J1i+T '

& = 2G§g, 27)

JT

6 =26Y YT,
K

and use has been made of the dimensionless variables x =
q/2my and T = k% — A%

From vector current conservation, the longitudinal com-
ponent is given by J;ii = 2J9. Note that in Eqgs. (24) and
(25), the various terms making up the current are similar
to the ones that can be found in traditional nonrelativistic
expansions commonly used for the charged current (see, for
instance, [16]), except for the x- and 7-dependent factors,
&, &, that provide the required relativistic behavior. In J\()
we include the first-order O(n) contribution. This spin-orbit
term is proportional to the operator (k x ) -0 and is of
some importance for high ¢ values. On the other hand, the
transverse component J J‘; is the sum of the usual magnetization
(0 X k) piece plus a first-order term, the convection term
which is proportional to -+, that gives in general a very small®
contribution to the cross section for high ¢ [26,28].

In the case of the axial-vector sector, only the transverse
component of the weak neutral current was expanded in
[26]. We use the following version of the corresponding SR
current

Ji=¢ot, ¢ =V1+1G,. (28)
Note that we have neglected the terms of order 7 since, as we
shall show in the next section (and also demonstrated in [26]
in the context of parity-violating electron scattering), they are
small and add unnecessary complications to the shell model
calculation. They can be safely neglected for our purposes.
Remarkably, the factor 4/1 4+ t in Eq. (28) already accounts
for relativistic effects in this current (see [26] for the full
expansion of this current to first order in 7).

We are left with the 0 and z components of the axial-vector
current. Their SR expressions are presented here for the first
time. Using a notation reminiscent of that used in Appendix A
of [26], we write them to first order in 7 as

J =tk -o+¢int o, (29)

Ji=Ck-o+ ot o, (30)

2Note that § = p/m y is essentially the velocity v of the initial struck
nucleon in units of c.

PHYSICAL REVIEW C 71, 065501 (2005)

where

;'/:L&G/ {//:LI:G . 22 G/i|

0T St A T T etk 1D A
(31)

/ 1 ! 4 A’ K /

e e !

(32)

and we have introduced the following combination of axial-
vector and pseudoscalar form factors

=G4 —1Gp. (33)

For these components of the axial-vector current, Eqs. (29)
and (30), we have performed the expansion to first order
in n. The first-order axial-convective term is proportional to
o - 1, and, as for the spin-orbit and convection terms, only the
perpendicular velocity n* appears. As we shall show below,
for the kinematics of interest in this work, the G/A form factor
which drives the zeroth-order terms turns out to be small
because of cancellations in Eq. (33) between G4 and tGp.
In such cases, the O(n) term is dominant in these current
components.

C. The continuum shell model

In this work, we restrict our attention to the closed-shell?
nuclei 12C, 190, and *“°Ca, which we describe in a continuum
shell model (CSM). Thus the present model does not include
nuclear correlations. Such effects are important for low energy,
in particular in the axial responses, and have been estimated,
for instance, in the RPA approach of Ref. [15], but are
expected to be smaller at the GeV energies considered in this
paper. The initial state |i) appearing in the hadronic tensor,
Eq. (19), is described as a Slater determinant representing the
uncorrelated nuclear core with all shells occupied. Since we
are working in the impulse approximation, the final states are
particle-hole excitations coupled to total angular momentum

J, namely, | f) = |(ph~")J). The single hole |h) = |4} ji)

and particle |p) =|epl,j,) wave functions are obtained
by solving the Schrédinger equation with a Woods-Saxon
potential

Vis df(r, Ro,do)l

V(r) = —Vo £(r, Ro, ao) + —= Lo+ Velr),
msr dr
(34)
where
1
f(V, R,Cl):m, (35)

and V¢(r) is the Coulomb potential of a charged sphere of
charge Z — 1 and radius Ry (it is equal to zero for neutrons).
The parameters of the potential are fitted to the experimental
energies of the valence shells and are given in Table 1.

3By shell we mean a subshell with quantum numbers (nl;).
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TABLE I. Woods-Saxon potential parameters for protons p and
neutrons n. Units are MeV for V;, and fm for ao and r(. The reduced
radius parameter ry is defined by Ry = rpA'/3.

Vop VLpS 14 VL"S o Ao
2c 62.0 3.20 60.00 3.15 1.25 0.57
160 52.5 7.00 52.50 6.54 1.27 0.53
40Ca 57.5 11.11 55.00 8.50 1.20 0.53

In the shell model, the energy transfer is computed as
the difference between the (nonrelativistic) single-particle
energies of particle and hole w = €, — ¢;,. The relativistic
kinematics are taken into account by the substitution

€, = €,(1 +¢€,/2mp) (36)

as the eigenvalue of the Schrodinger equation for the particle;
cf., Eq. (1).

Since the nuclear states have good angular momentum, it
is convenient for the shell model calculation to perform a
multipole expansion of the components of the current operator
in terms of the usual Coulomb (C), longitudinal (L), transverse
electric (E), and transverse magnetic (M) operators [26,54,60],
defined by

Cro(q) = / d’rj(qr)Y @) Jo(r), 37)
Lo(q) = é / d’rV [j;(gr)Yo®]- J(), (38)
A 1

Ejn(g) = p / d*rvV x [j1(@r)Y m®]1-J@), (39)

Mym(q) = f iy @R - 3O, (40)

where j;(gr) is a spherical Bessel function and Y, (f) is a
vector spherical harmonic.
The nuclear response functions are then written as

Rec =41y (Y +|ciP). (41)
o

ReL =2m Y (CY*Ly + CYLY* + C*LE + CALYY).
a (42)

Ruo=dn ) (LY +[2i)). (43)
Ry =dn Y (|EY[ + M)+ |EL] + M), @a)

Ry =21y (EY*MJ} + EYM}* + E}*M, + E}M)"),
o

(45)

where in the above sums over «, the particle energy €, =
€, + w is modified according to Eq. (36), and we use the index
a to label the quantum numbers @ = (4,1, j,, J). Moreover,
the C, L, E, and M multipoles of the vector and axial-vector
currents are defined by the reduced matrix elements of the
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corresponding operators

CY +iCl = (FIC,@li), (46)
Ly +iLy = (fILs@li), (47)
E} +iE} = (FIE, @), (48)
—iM) — M = (FIM(@)lli). (49)

These reduced matrix elements are given in [26] for the
vector and axial-vector transverse operators and in [60] for
the leading-order longitudinal axial-vector component. In the
present paper, we add the first-order convective term of the
axial-vector current §*- - o appearing in Egs. (29) and (30).
The C2 and L multipoles of this new term are presented in
Appendix A.

The sums over « in Egs. (41)—(45) are infinite and have to
be truncated in the calculation once convergence is reached.
In our approach, the number of multipoles is determined by
the maximum, of the total angular momentum Jp,,x. We fix
this quantity by computing the response functions setting the
potential in the final state to zero and comparing with the
factorized PWIA (see Appendix B for details). The number
Jmax increases with ¢ and with the number of nucleons A. In
the next section up to 41 multipoles have to be summed for the
case where g = 1.5 GeV/c.

III. RESULTS

A. Test of the SR approach

The quality of the SR expansion of the charged current
is illustrated in Figs. 1-3. There we show the separate
vector, axial-vector, and total response functions of 12¢ for
three values of the momentum transfer, ¢ = 0.5, 1, and
1.5 GeV/c. The Fermi momentum is chosen to be kp =
220 MeV/c. We show the separate response functions instead
of cross sections because in these functions we can appreciate
better the contribution of the various current components
and the behavior of the SR approximation as a function of
the momentum and energy transfers. This can be seen in
the figures by comparing the solid lines, representing the
RFG result (exact relativistic answer) with the dashed lines,
corresponding to the semirelativistic Fermi gas (SRFG). This
last model is obtained by implementing the SR expansion
of the current in a nonrelativistic Fermi gas, although with
relativistic kinematics. The accord of the two models is almost
perfect for the three values of ¢ considered. In Fig. 1, we
only show R'- and R}, since R and R} are related to
R(‘:/c by current conservation. In Fig. 2, we give instead the
three response functions, since the axial-vector current is not
conserved. Finally, in Fig. 3, we display the sums of Figs. 1
and 2 and also the interference response R7-.

In Figs. 1-3 we also plot (as dotted lines) the CSM
responses, computed using the relativizing procedure. For
comparison, we show the PWIA results obtained by setting the
potential in the final state to zero (or, equivalently, by
integration of the factorized exclusive responses, as shown in
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15 — 1.2 : : 0.2 : :
q=0.5GeV/c g=1GeV/c g=15GeV/c
T AN al A0 ] oast A0 1
= 101 \ 1 08f 1 ' X,
0, A 0.6 . 0.1} 1
o o5f ' 1 o4} -
>0 \ =L ]
& N 0ol 1 o005
40 et s 12 = 3 —t . e
=730t ] 0 A
L st ] 2t ]
& 20} ] 6F ]
S 4r L\ 1 1r 1
0 - 2F \\\ ]
0 100 200 300 400 200 400 600 800 600 800 1000 1200
w [MeV] w [MeV] w [MeV]

FIG. 1. Vector response functions of 12C for three values of the momentum transfer. Solid lines: REG with kr = 220 MeV/c. Dashed lines:

SRFG. Dotted: CSM. Dot-dashed: PWIA.

Appendix B). The CSM response functions are quantitatively
similar in magnitude to the RFG and are centered approx-
imately around the same value of w. The major discrepancy
between the two models is found for the axial-vector Réc, RéL,
and Rﬁ‘L response functions, where the CSM responses are
slightly larger in magnitude than the RFG ones. These re-
sponses are in general small compared with the corresponding
vector responses. This is a consequence of the suppression of
the axial-vector current in the longitudinal channel becasue of
the small value of the form factor G';, defined in Eq. (33), for

these kinematics. In fact, from the definition in Eq. (23) of the
pseudoscalar form factor, one has
) Ga.

2
Ga= (1 - ﬁ
b
At the intermediate energies of interest, | Q%] > mi ,and hence
the factor inside the parenthesis in Eq. (50) is also small, of
order O(m2/Q?). In this situation the first-order, axial-vector
convective term of the current, which is proportional to §* - &

(50)

q¢=05 Gel\//c l

RA [GeVY

'q =1 deV/c

0.03 q = 1.&_GéV/c 1
N

NN

| 0.02

] 0.01

-0.1
-0.2
-0.3

Rgy, [GeVT]

0

1 -0.005

E -0.01

- -0.015

R$, [GeV™TY

0.012

0.008

0.004

R4 [GeV™Y)

\ N

s

I

100 200 300 400
w [MeV]

800 1000 1200
w [MeV]

600

FIG. 2. Same as Fig. 1, but for the axial-vector responses.
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14 . .
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3
= | 0.6 .
o 02l | 0.05
0
— 1 01} .
. | 02t 1 004
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e 13T 1 008
3 04} .
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FIG. 3. Same as Fig. 1, but for the total (vector plus axial-vector) responses.

[see Egs. (29) and (30)], is dominant over the zeroth-order con-
tribution, and the corresponding response functions are in gen-
eral small compared with the vector ones. An example is shown
in Fig. 4, where we display the separate contributions of the
zeroth- and first-order terms to the axial-vector response R
of '2C for ¢ = 500 MeV/c in the CSM. For higher values of ¢
the zeroth-order contribution is much smaller than the others.

From inspection of the responses Rcc, Ry, and Ry, we
observe that the PWIA results are clearly shifted to the right
of the CSM by roughly the averaged depth of the potential
~35 MeV. This shift is present also in the separate vector and
axial-vector responses. In the case of the CL and LL, the shift is
larger because of the energy factors used to compute the L com-
ponent of the current. The origin of the shift in PWIA is related
to the different treatment of the nuclear Hamiltonian in the
initial and final states [27]: while the energy of the initial bound
neutron is the sum of kinetic plus potential, €, = 1, + v, the
exiting proton is a plane wave and has only kinetic energy
€, =1,. Accordingly, for fixed w there is an imbalance
between potential energies in the initial and final states,
yielding w =t, — 1, — v;. However, in the CSM we use
the same potential for the initial and final state, which now

has €, =1, +v,. Hence w = t, — 1, + v, — vp,. Thus, in the
CSM the potential energies of particle and hole partially cancel

1 T T T
q=0.5GeV/c
0s F // \\ 4
— ; \
— / \
| / \
> 0.6 [ / \ .
[¢B) / \
/
0 - / \ -
<3 04 / \
~ / \
/ \
02T / AN 7
/ \
/ \
/ S
/ I — e
0 100 200 300 400
w [MeV]

FIG. 4. Axial-vector response R&. of '?C in the CSM. Solid:
contribution of the zeroth-order term in the SR expansion. Dashed:
first-order contribution.
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out; this explains why the position of the peak is close to
the RFG, where only kinetic energies enter. Of course, the
cancellation is not perfect, and a slight shift to the right of the
RFG is also observed in the CSM. This small shift of the CSM
is the behavior expected from previous theoretical studies [61].

Another test of the SR approximation is illustrated by
the results shown in Fig. 5 for the differential cross section
12C(v,“ ©”). Therein we show examples for two incident
neutrino energies, € = 1 and 1.5 GeV, and for two scattering
angles 6 = 45°, and 135°, as a function of the exiting muon
energy €'; so in this case, we are testing different ranges of ¢
and w, which can be high or low depending on the kinematics.
We see again that the RFG and SRFG predictions are almost
equal in all cases, while the CSM also gives similar results,
with the exception of the characteristic tails and slight shift,
which now is to the left of the RFG because w decreases
with €.

Summarizing this subsection, using the Fermi gas as
“testing arena” for the approximated CC current, we have
found that the accord between the results obtained using the
SR expansion and the exact relativistic result is almost perfect
for the intermediate and high values of ¢ and w considered.
The CSM relativized using our procedure gives rise to cross
sections that are within the allowed kinematical region and
have a magnitude similar to those of the RFG. This behavior
of the CSM is similar to what was found for (e, ¢’) reactions in
[26]. We should underscore the fact that the CSM is used here
just to illustrate how one can use our relativizing procedure
in a more complex model than the Fermi gas and to show
the results expected from it. In particular, especially when
discussing lower energies where nonrelativistic approaches
are valid, more elaborate models exist that describe the (e, e’)
experimental data rather well. For example, it is well known
from other work that final-state interactions can significantly
modify the bare CSM or RPA responses, mainly through
medium renormalization of the particle-hole excitations. This

¢ [MeV]

mechanism can be approximately taken into account by using
an effective nucleon mass that produces a shift and by a folding
of the bare responses, producing an asymmetric broadening
which improves the agreement with the experimental data
[62-64].
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FIG. 6. Scaling of the first kind in the CSM with scaling functions
obtained from the longitudinal electromagnetic responses in the CSM.
In each panel we include ¢ = 0.5, 0.7, 1, 1.3, and 1.5 GeV/c.
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FIG. 7. Scaling of the second kind including in each panel the
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B. Scaling

In this subsection we work within the CSM. We first focus
on the inclusive electron scattering reaction and investigate the
scaling properties of the electromagnetic responses for various
choices of kinematics for '>C, '°0, and *°Ca. The (e, ¢’) cross

section is given by
do
d<Yde’ = oMot (VL RL + v7 R7). (51)

The same SR expansion for the vector current, Egs. (24)
and (25), is employed here for the electromagnetic sector.
We compute the CSM scaling functions as

_ R (52)
fu= G,’
fr= G, (53)

PHYSICAL REVIEW C 71, 065501 (2005)

160 400&
" g =05 GeV/c

"¢ =05GeV/c
sl q /
0.6 F
0.4}

0.2F

0.8
0.6
0.4F
0.2F

0.8F
0.6
0.4
0.2F

fu, fr

' q': '1.3'Ge'\//'c
0.8 F

0.6
0.4F
0.2F

S GV
sk q eV/c 1|

0.6
0.4
0.2F

-2-15-1-050051 152 -2-15-1-050 0.5 1 1.5 2
(4 G

FIG. 8. Scaling function f; obtained from the longitudinal
electromagnetic response (solid lines), compared with the scaling
function fr obtained from the transverse response (dashed lines), for
several values of g.

with

Gk = Ao (ZUg + NU}) K=L,T, (54)

where A is given in Eq. (C2) in Appendix C, and the
electromagnetic single-nucleon functions for protons Uy, and
neutrons Uy are defined similarly to the ones given in
Appendix C for the vector current U(‘:/C and U }/ .

The scaling behavior can be studied by plotting these
functions against the scaling variable [46]

1 A—T
V= VEF VA + Dt +x/Td + 1)

for different kinematics and for different nuclei. Here &7 =

V1+ki/m% — 1.

A study of the behavior of f;, computed for various values
of the momentum transfer, is summarized in Fig. 6. We plot
together f; for ¢ = 0.5, 0.7, 1, 1.3, and 1.5 GeV/c. All the
curves approximately collapse into one. Small violations of
the scaling are seen at low ¥y coming from the low-energy

(55)
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FIG. 9. Differential cross section of the re-
action ?C(v,,, ™) for neutrino incident energies

€ = 1 and 1.5 GeV and for two scattering angles.
Solid: CSM. Dashed: reconstructed from the

electromagnetic scaling function f;(¥) com-
puted at the same kinematics.

600

2¢ e=1GeV e=1.5 GeV
Z 6l ] ;| o=15 ]
-~
S -
£ 4 1 2t 1
- s !
T~ 2t 1 1k |
S 1} ]
=
1 1 1 1 0 1 1 1
500 600 700 800 900 1000 800 1000 1200
0.5 . : : 0.15
Z
= 04} 1
o 01} ;
£ 03r 1
T
(=) L 4
= 02 0.05 .
ol 01t ]
=&
=
O 1 1 1 1 1
200 300 400 500 600 200 300 400 500
€ [MeV] € [MeV]

potential resonances for ¢ = 0.5 GeV/c, which disappear for
higher ¢ values. Thus, scaling of the first kind is approximately
achieved in the CSM. Note that scaling also holds for || > 1,
the region where the RFG responses are zero.

Scaling of the second kind, i.e., independence of the nuclear
species for fixed g, is illustrated in Fig. 7. We plot together f;,
for the three nuclei studied. The fitted Fermi momenta are 220,
215, and 240 MeV/c for '2C, 190, and *°Ca, respectively. The
collapse of the three curves into one is clearly seen, with small
deviations at the region of the maximum. Again the exception
is found for ¢ = 0.5 GeV/c in the resonance region. Since
both kinds of scaling are found, we conclude that superscaling
occurs within our model.

Finally, in Fig. 8 we show what has been called scaling of the
zeroth kind [50], i.e., the longitudinal and transverse scaling
functions, f; and f7, also collapse into one universal function
f- Experimentally, deviations from scaling in the region of
the QE peak mainly occur in the transverse response and are
related to contributions beyond the impulse approximation, in
particular to meson-exchange currents [49,50]. Since these
contributions are not included in our CSM, the L and T
responses scale in the same way, as shown in Fig. 8.

In the present work, we do not compare with the ex-
perimental (e, ¢’) scaling function because, as stated above,
the CSM is still lacking some ingredients (for instance,
medium modifications to the p-h propagator, inclusion of
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energy-dependent potentials, etc.), without which one should
not expect to obtain excellent agreement with the experimental
data. The focus of the present study has been limited to showing
that superscaling occurs at the level of relativized CSM.

Let us now turn to neutrino reactions. In [53] a semiem-
pirical model, based on the superscaling property of the L
responses of '2C and '®O for high momentum transfer, was
proposed to predict the neutrino inclusive cross sections up to
the A peak. The latter were calculated starting from the RFG
expression for the cross sections and substituting the “theo-
retical” RFG superscaling functions with phenomenological
ones (one for the QE and a different one for the A peak)
derived from fits of electron scattering data. Therefore, this
reconstruction, besides assuming the validity of superscaling
in electron scattering, relies on the hypothesis that it also holds
for the neutrino inclusive cross section for the high energies
involved, so that electron scattering results can safely be used
as input in neutrino scattering calculations. This assumption
obviously cannot be tested using the RFG model, since, as
stated in the introduction, it is true by construction.

In the present work, we have at hand a model, the CSM,
for both the QE (e, ¢') and (v,,, ™) reactions that has been
relativized and so should be able to handle modeling at
high energies. Moreover, superscaling of the electromagnetic
responses is well satisfied by the CSM. Hence we can adopt
the same approach as in [53] treating the CSM electromagnetic
scaling function as a pseudophenomenological one and using
it to compute neutrino cross sections. Upon comparing cross
sections obtained this way with those obtained directly using
the CSM, we can gain some insight into the degree to that
the shell model incorporates effects that are scale breaking.
While the level of scaling violation is expected to be quite
small, since we have already seen excellent superscaling in
the figures discussed above, the specific differences in the
roles played by the various current operators involved in
electromagnetic and CC weak processes might lead to different
sensitivities to scale-breaking effects. Accordingly, it is useful
to compare the cross sections obtained within the scaling
approach with those computed directly using the model. In
context, it should be noted that this does not imply in general
that the scaling approach has been shown to be robust, since
here the comparisons are being made entirely within limited
models which clearly lack elements that may play some role in
the responses and may be scale breaking. We know of at least
one such ingredient, namely, meson-exchange currents which
have been shown to provide scale-breaking corrections that
enter typically at the 10% level in the overall cross sections.
Nevertheless, the study presented below indicates that the
scale-breaking effects incorporated in the present models are
in fact quite small.

We show typical results of this study in Figs. 9 and 10 for 12C
and '°0, respectively. The cross section for (v, #7) is shown
for two incident energies and for two scattering angles. The
dashed lines have been computed from the scaling function
f1 obtained from the analysis of (e, e¢’) CSM predictions.
To be precise, we use Eq. (C1) to compute the neutrino
responses, substituting fRFS by f; . The solid lines correspond
to the exact CSM result. The differences found between the
two approaches are quite small, at most ~3%. These small
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differences are produced by the slightly different scaling
behavior of the axial-vector and vector responses, which,
however, has little effect on the total cross section. Due to
the simplicity of the CSM, these results cannot be taken as
a definite proof of superscaling, but they certainly represent
an important step forward in establishing the validity of the
approach presented in [53].

IV. CONCLUSIONS

One of the goals of the present study was to explore the
degree to which scaling and superscaling behaviors are reached
for relatively high-energy semileptonic inclusive reactions
with nuclei at excitation energies in the vicinity of the
quasielastic peak. The focus has been placed on comparisons
between the Fermi gas model (both the fully relativistic Fermi
gas and a semirelativized version of it) and a relativized
continuum shell model.

Since we are interested in energies of several GeV, relativity
is clearly a required ingredient. In the present work, we have
presented a clear and direct procedure that allows one to
incorporate some classes of relativistic effects and thereby
to relativize otherwise nonrelativistic models of the reaction,
such as the shell model employed here. We use the two
versions of the Fermi gas model to motivate the procedures
followed. Two steps are involved: first, one relativizes the
kinematics in the reaction, and second, expansions are made
for the single-nucleon currents in the problem. In this work,
we have extended our previous treatments to include the
full charge-changing weak interaction current. Importantly,
because the expansions are made to first order in p/my, but
not at all in g/my or w/my, they differ from the traditional
FW expansions, and for QE scattering they should be more
robust at high energies where expansions in g /my and w/my
clearly fail.

Using the two versions of the Fermi gas model and the
relativized continuum shell model, together with some results
from the plane-wave impulse approximation, to represent both
electromagnetic (e, ¢’) and CC weak (v, ™) processes, we
have proceeded to quantify the level of scaling violation. This
allows us to evaluate the corresponding uncertainty in the
predictions one makes for the neutrino cross section using
the scaling approach with input from analyses of electron
scattering data. In the present paper, we have shown that for
intermediate to high energies the description of the final state
through a real mean field seems not to change appreciably
the scaling and superscaling properties of the electromagnetic
response functions at the quasielastic peak, and that the scaling
function extracted from these is basically the same as for the
(v, 1) reaction.

Although the present analysis performed within the rela-
tivized shell model does not constitute a proof of the scaling
hypothesis in the general case, scaling studies such as those
presented here allow us to gain additional insight and, in
particular, to rule out (or not) some reaction mechanisms as
possible causes of scaling violations.

In summary, the relativizing procedure followed in this
work embodies some of the ingredients that are almost
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certainly required for a successful description of such inclusive
processes in the quasielastic regime. Models that do not take
at least these ingredients into account are very likely to fail
in the several-GeV energy region of interest here. This does
not mean, however, that additional dynamical features are
not needed before a full understanding of these high-energy
responses will be attained. In particular, other parallel studies
being pursued by us hold some promise for reaching a
good understanding of the phenomenologically derived scaling
function used recently to make predictions for CC neutrino
reactions in the GeV region. Some of these results will be
presented in the near future.

ACKNOWLEDGMENTS

This work was partially supported by funds pro-
vided by DGI (Spain) and FEDER funds, under Contract
Nos. BFM2002-03218, BFM?2002-03315, and FPA2002-
04181-C04-04. and by the Junta de Andalucia and the
INFN-CICYT Collaboration agreement (Project “Study of
Relativistic Dynamics in Electron and Neutrino Scattering”).
It was also supported in part (TWD) by the U.S. Department of
Energy under cooperative research agreement No. DE-FC02-
94ER40818.

APPENDIX A: MULTIPOLES OF THE CONVECTIVE
AXTAL-VECTOR OPERATOR

Here we compute the Coulomb multipoles of the convective
axial-vector charge operator, which is the first-order term in
the expansion of j§ [Eq. (29)]. The corresponding coordinate-

space operator is given by
pcl@) =e'"¢in, -0 (AD)

where r is the coordinate of the nucleon over which the
operator acts. To obtain the multipole operators, we write the
above operator in the form

iqre/ n-q
pc(q) = e"47g, (ﬂ—?Q> Y

n-V .
o (TS

Performing in this equation the multipole expansion of the
plane wave for q along the z axis

(A2)

(A3)

¢V = A Y il [11js(qr)Y o(®). (A4)
J
where [J] = +/2J + 1, we obtain
pc(@) = Var Y i'[11C 0(9), (AS)
J
where the Coulomb multipole operators are
A " n- 4 . PN
Ciolg) = oo - (77 + 7 V) Ju(qr)Y o(T). (A6)

Later on we will also make the substitution p — —iV,
although in this equation V operates only on j,;(gr)Yo(E).
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The procedure now is to use Racah algebra and the
general properties of spherical harmonics and spherical Bessel
functions to write the above operator in explicit spherical-
tensor form. The following expressions can be obtained:

Coo = &[0 + Clal. (AT)
N 1
¢ =L = N, A8

% mm;[]m (A8)
A2 1 (J + 82 + 81!/
Cho=—0 2 2 [/11J] Yo

s==+1s'=+1
(A9)

where J' =J +s,J"=J 4+, and s,s' = +1 (coming
from the derivative of the Bessel function, which is a linear
combination of the Bessel functions for J 4 1), and we have
defined the auxiliary coupled operator

Uyryrg = jor(gr)lo @ [Y,(8) ® Vo

Next we proceed to compute the reduced matrix elements
of this U operator between shell model particle and hole
states |p) = |%lpjp) and |h) = |%lhjh). Using standard Racah
algebra [65,66] we obtain

(pIUryglih)

(A10)

3 2l Jo
= (=)t E[lp][jp][jh][J][J/][JH] % In jn
1JJ

J 1T L, J" Ly
Lilsnn + 84,0)"* )
XZ[ n1sn(ln + 85,1) {lh l,,Lh}<0 0 O>

S;,=:‘:1
l/’l + 6Sh,—l)

o d
X / drrzR,,(r)jJ/r(qr) <— — S Ry (r),
0 dr

(Al1)

where R,(r) and R;(r) are the radial-wave functions, L, =
I + 55, and s, = £1. We can now use this result in Egs. (A8)
and (A9). It is convenient to use the following identities
involving products of six-j and three-j coefficients, for J” =
J' +s"and L, =1, + s, with ', s, = £1:

J"1 I (1, 1" Ly
i, Ly [Loo o
_ [)];L-Hh-f-./'

[Lr]lR1LJI0I"]

x <lfl ‘_]1 l(,),) —Shs/[(lh +35,7,1)(J/ +3531)]1/2

{[(zh + 86, 1) + 80 1]

L J'1,
><<0 0 0)}, (A12)
J1 J\(l,JL,
Il, Ly [\ 00 0
Py b J 1
P /1+J+1 h p
= bt g s , Al3
TR 1)<1 1 0> (AL3)

where P! is the parity function equal to 1 if  is even and zero
if n is odd. We also use the following product of a nine-j and
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a three-j

L
l”’_" I
h Jh 000
I

(_)j,,+l,,+% pt

— = D=

Lp++J+1

Vo o U

Xp+Xh+SJ+8x1 jp g J
) VT +8 1) A

2 2

where x, = (— 1)’/’+j/)+%(jp + 1). After some work, we finally
arrive at the matrix elements written in the form

(PICY ) = A, (o) / drr R 2 (qr)Ru(r)
0

dRh(r)
7‘
(A15)

+ LBy / drr R qr)

(PICP k) = ZAU/(ph) / drR3(r)jr(qr)Ry(r)

s:l:l

dR,,
L L ZBH(ph)/ arr Ry g

s:tl

(A16)

where J' = J + 5,5 = %1, and j}(2) is the derivative of the
Bessel function. We have defined the following coefficients,

A;(ph) = I,,+lh+J+1 |:[J]\/lh(lh + Dby,

s==+1

[J] J + 5s1b11/:|aj,

By(ph) = (_)mu ][mm< Jn J)a,
l+lh+J+1 Varx P % _% 0

Ay (ph)
= P1r+l,,+1+1\/f + 853/ In(lh + DV J'(J' + Daybyy,
(A19)

Bjy(ph)
(=) =2 1]
NZT VA

= Plp+1,,+1+1 (Xp + xn +5J +851)

(A20)
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where the factors a; and b;; are defined as

[3
=)0 E[lp][lh][jp][jh][J]a (A2D)
1 .
2 lP -]P lh ]/ 1
by =1Ll j (1 O 5’) (A22)
1J'J

APPENDIX B: PLANE WAVE IMPULSE APPROXIMATION

We follow the approach of [27]. In PWIA, the inclusive
response functions of the shell z can be written as an integral
over the missing momentum p = p’ — q, with p’ = ,/2mye,,

ptq 21
dpp / dgwi (v’ )My(p)
0

[R2VA(q, )], = =X
|p'—q|

B1)
of the scalar momentum distribution for each occupied shell
2]h +1
My (p) = |Ri(p)I, (B2)

where R;,(p) is the radial-wave function in momentum space.
The single-nucleon exclusive responses wg(p’, p), for K =
CC,CL,LL, T, T’ are readily computed using the vector,
Egs. (24)—(25), and axial-vector, Eqgs. (28)—(30), current
components

wee = wee + Wi (B3)
wee = & + &7k, (B4)
wée = ok + 40t (B5)
WcL = wCL + wC]_s (B6)
A
wé, = = wec, (B7)
wéL = _foé‘%’( - fo 53//771, (B8)
WLL = wLL + wLL? (B9)
A 2
Wy, = (;) wees (B10)
wiy = &% + &7, (B11)
wr = wT + wry (B12)
wy =2&%2 + &7, (B13)
wy =24, (B14)
wy = 2§[C]k. (B15)

Since these functions do not depend on the azimuthal angle of
p, namely, ¢, the response functions in Eq. (B1) are reduced to
an integral over the missing momentum p, which is performed
numerically.

APPENDIX C: THE RELATIVISTIC FERMI GAS

Here we summarize the expressions for (v, ;™) reactions
in the RFG model. We follow [53], where the expressions were
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written to leading order. Here we write the full results for the
non-Pauli blocked regime of interest in this work. The nuclear
response functions are written as

Rx = NAgUk frec(¥), K =CC,CL,LL,T,T’,

(C1)
where N is the neutron number, and
A = $F3 . (C2)
MNNEK

Here nrp =kp/my, and &r = /1 + nZF —1. In Eq. (C1)
Jfrec(¥) is the scaling function of the RFG,
frea(W) = 31— y2)0(1 — ¥?), (C3)

and ¥ is the scaling variable given in Eq. (55). Finally, we give
the single-nucleon responses Uk . For K = CC we have

Uce = Ule + (U&), + (U&),.. - (C4)
e » (260 +1(26Y)°
ul.=—1(2GY £ ML A, C5
cc =7 |:( £) + Tz (C5)
where
T 5 1 & o]
AZESF(I_W)K 1+;+§(1—1//) , (Co)

and we have written the axial-vector response as the sum of
conserved (c.) plus nonconserved (n.c.) parts,

2
(&), = Gaa, ()
(Uée),. = )L—ZG’ : (C8)
CC/ne. — T A -
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For K = CL, LL we have

Ue. = UeL+ (U&)., + (U&),c. - )

Ui = U + (Uf) + (UiL) e » (C10)

where the vector and conserved axial-vector parts are deter-
mined by current conservation as

A
U4 = - p (C11)
A
(UéL)c. - T (UéC)c.’ (C12)
Vv )‘2 1%
UL = PUCC’ (C13)
A )‘2 A
(ULL)C. = ﬁ (UCC)C ’ (C14)
while the n.c. parts are
A
Ud),. =-=26,2, (C15)
e T
A K o
(Uil = G (C16)
Finally, the transverse responses are given by
Ur = U +Up, (C17)
, (G +1QG))?
Uy =2tQ2GY)* + A, (C18)
147
U# =2(1 4+ 1)G3 + G A, (C19)
Ur =2G4Q2G )Tl + o)l + A, (C20)
with
X [T E&r(1—9y?)
A= _— C21
14+ 2k €20
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