We present a family of algorithms, combining real-space renormalization
methods and belief propagation, to estimate the free energy of a topologically
ordered system in the presence of defects. Such an algorithm is needed to
preserve the quantum information stored in the ground space of a topologically
ordered system and to decode topological error-correcting codes. For a system
of linear size L, our algorithm runs in time log L compared to L^6 needed for
the minimum-weight perfect matching algorithm previously used in this context
and achieves a higher depolarizing error threshold.Comment: 4 pages, 4 figure