34 research outputs found

    Isoprene and monoterpene fluxes from central amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Get PDF
    We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m^−2 h^−1 for isoprene, 0.20 mg C m^−2 h^−1 for α-pinene, and 0.39 mg C m^−2 h^−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM).\ud \ud In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3–8×10^6 molecules cm^−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5×10^6 molecules cm^−3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign.\ud \ud The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO2 flux estimate, 1–6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions

    Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles

    Get PDF
    Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+^{+} tumours formed multiple liver and spleen metastases, while Tspan8^{-} tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up‐regulation of E‐cadherin and down‐regulation of Twist, p120‐catenin, and β‐catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal–epithelial transition. Furthermore, Tspan8+^{+} cells exhibited enhanced cell–cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several‐fold increase in EV number in cell culture and the circulation of tumour‐bearing animals. We observed increased protein levels of E‐cadherin and p120‐catenin in these EVs; furthermore, Tspan8 and p120‐catenin were co‐immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer

    The Problem of the Hecuba

    No full text

    Methanol emissions from deciduous tree species: dependence on temperature and light intensity

    No full text
    Methanol emissions from several deciduous tree species with predominantly mature leaves were measured under laboratory and field conditions. The emissions were modulated by temperature and light. Under constant light conditions in the laboratory, methanol emissions increased with leaf temperature, by up to 12% per degree. At constant temperatures, emissions doubled when light intensity (PAR) increased from darkness to 800 micromol x m(-2) x s(-1). A phenomenological description of light and temperature dependencies was derived from the laboratory measurements. This description was successfully applied to reproduce the diel cycle of methanol emissions from an English oak measured in the field. Labelling experiments with (13)CO(2) provided evidence that less than 10% of the emitted methanol was produced de novo by photosynthesis directly prior to emission. Hence, the light dependence of the emissions cannot be explained by instantaneous production from CO(2) fixation. Additional experiments with selective cooling of plant roots indicated that a substantial fraction of the emitted methanol may be produced in the roots or stem and transported to stomata by the transpiration stream. However, the transpiration stream cannot be considered as the main factor that determines methanol emissions by the investigated plants
    corecore