140 research outputs found

    Reactivity of OH and CH3OH between 22 and 64 K: Modelling the gas phase production of CH3O in Barnard 1b

    Full text link
    In the last years, ultra-low temperature chemical kinetic experiments have demonstrated that some gas-phase reactions are much faster than previously thought. One example is the reaction between OH and CH3OH, which has been recently found to be accelerated at low temperatures yielding CH3O as main product. This finding opened the question of whether the CH3O observed in the dense core Barnard 1b could be formed by the gas-phase reaction of CH3OH and OH. Several chemical models including this reaction and grain-surface processes have been developed to explain the observed abundance of CH3_3O with little success. Here we report for the first time rate coefficients for the gas-phase reaction of OH and CH3OH down to a temperature of 22 K, very close to those in cold interstellar clouds. Two independent experimental set-ups based on the supersonic gas expansion technique coupled to the pulsed laser photolysis-laser induced fluorescence technique were used to determine rate coefficients in the temperature range 22-64 K. The temperature dependence obtained in this work can be expressed as k(22-64 K) = (3.6+/-0.1)e-12 (T/ 300)^(-1.0+/-0.2) cm3 molecule-1 s-1. Implementing this expression in a chemical model of a cold dense cloud results in CH3O/CH3OH abundance ratios similar or slightly lower than the value of 3e-3 observed in Barnard 1b. This finding confirms that the gas-phase reaction between OH and CH3OH is an important contributor to the formation of interstellar CH3O. The role of grain-surface processes in the formation of CH3O, although it cannot be fully neglected, remains controversial.Comment: Accepted for publication in The Astrophysical Journa

    Laboratory And Astronomical Detection Of The Negative Molecular Ion C3N-

    Get PDF
    The negative molecular ion C3N- has been detected at millimeter wavelengths in a low-pressure laboratory discharge, and then with frequencies derived from the laboratory data in the molecular envelope of IRC+10216. Spectroscopic constants derived from laboratory measurements of 12 transitions between 97 and 378 GHz allow the rotational spectrum to be calculated well into the submillimeter-wave band to 0.03 km s(-1) or better in equivalent radial velocity. Four transitions of C3N- were detected in IRC+10216 with the IRAM 30 m telescope at precisely the frequencies calculated from the laboratory measurements. The column density of C3N- is 0.5% that of C3N, or approximately 20 times greater than that of C4H- relative to C4H. The C3N- abundance in IRC+10216 is compared with a chemical model calculation by Petrie & Herbst. An upper limit in TMC-1 for C3N- relative to C3N (< 0.8%) and a limit for C4H- relative to C4H (< 0.004%) that is 5 times lower than that found in IRC+10216, were obtained from observations with the NRAO 100 m Green Bank Telescope (GBT). The fairly high concentration ofNRFKorean government MEST 2012R1A1A1014646, 2012M4A2026720Southeast Physics Network (SEP-Net)Science and Technology Facilities Council ST/F002858/1, ST/I000976/1Swedish Research Council 2009-4088U.S. NSF AST-0708176, AST-1009799NASA NNX07AH09G, NNG04G177G, NNX11AE09GChandra grant SAO TM8-9009XBiochemistr

    Discovery of SiCSi in IRC+10216: A missing link between gas and dust carriers of SiC bonds

    Get PDF
    We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CWLeo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emis- sion arises from a region of 6 arcseconds in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a SiC bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.Comment: To be published in the Astrophysical Journal Letters; Accepted May 6 201

    Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    Get PDF
    Context. The recent detection of warm H2_2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2_2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2_2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2_2O molecules in the intermediate wind. Aims. We aim to determine the properties of H2_2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2_2O formation pathway. Methods, Results, and Conclusions. See paper

    Strong CH+ J=1-0 emission and absorption in DR21

    Get PDF
    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR21 molecular ridge and foreground gas. These observations allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines.Comment: Accepted for publication in A&

    Oxygen Chemistry in the Circumstellar Envelope of the Carbon-Rich Star IRC+10216

    Get PDF
    In this paper we study the oxygen chemistry in the C-rich circumstellar shells of IRC+10216. The recent discoveries of oxygen bearing species (water, hydroxyl radical and formaldehyde) toward this source challenge our current understanding of the chemistry in C-rich circumstellar envelopes. The presence of icy comets surrounding the star or catalysis on iron grain surfaces have been invoked to explain the presence of such unexpected species. This detailed study aims at evaluating the chances of producing O-bearing species in the C-rich circumstellar envelope only by gas phase chemical reactions. For the inner hot envelope, it is shown that although most of the oxygen is locked in CO near the photosphere (as expected for a C/O ratio greater than 1), some stellar radii far away species such as H2O and CO2 have large abundances under the assumption of thermochemical equilibrium. It is also shown how non-LTE chemistry makes very difficult the CO-->H2O,CO2 transformation predicted in LTE. Concerning the chemistry in the outer and colder envelope, we show that formaldehyde can be formed through gas phase reactions. However, in order to form water vapor it is necessary to include a radiative association between atomic oxygen and molecular hydrogen with a quite high rate constant. The chemical models explain the presence of HCO+ and predict the existence of SO and H2CS (which has been detected in a 3 mm line survey to be published). We have modeled the line profiles of H2CO, H2O, HCO+, SO and H2CS using a non-local radiative transfer model and the abundance profiles predicted by our chemical model. The results have been compared to the observations and discussed.Comment: 20 pages, 9 figures, accepted for publication in the Astrophysical Journa
    corecore