1,482 research outputs found
Detecting covariance symmetries for classification of polarimetric SAR images
The availability of multiple images of the same scene acquired with the same radar but with different polarizations, both in transmission and reception, has the potential to enhance the classification, detection and/or recognition capabilities of a remote sensing system. A way to take advantage of the full-polarimetric data is to extract, for each pixel of the considered scene, the polarimetric covariance matrix, coherence matrix, Muller matrix, and to exploit them in order to achieve a specific objective. A framework for detecting covariance symmetries within polarimetric SAR images is here proposed. The considered algorithm is based on the exploitation of special structures assumed by the polarimetric coherence matrix under symmetrical properties of the returns associated with the pixels under test. The performance analysis of the technique is evaluated on both simulated and real L-band SAR data, showing a good classification level of the different areas within the image
Automatic recognition of military vehicles with Krawtchouk moments
The challenge of Automatic Target Recognition (ATR) of military targets within a Synthetic Aperture Radar (SAR) scene is addressed in this paper. The proposed approach exploits the discrete defined Krawtchouk moments, that are able to represent a detected extended target with few features, allowing its characterization. The proposed algorithm provides robust performance for target recognition, identification and characterization, with high reliability in presence of noise and reduced sensitivity to discretization errors. The effectiveness of the proposed approach is demonstrated using the MSTAR dataset
"Which sexuality? Which service?" : bisexual young people\u27s experiences with youth, queer and mental health services in Australia
On model, algorithms and experiment for micro-doppler based recognition of ballistic targets
The ability to discriminate between Ballistic Missile warheads and confusing objects is an important topic from different points of view. In particular, the high cost of the interceptors with respect to tactical missiles may lead to an ammunition problem. Moreover, since the time interval in which the defence system can intercept the missile is very short with respect to target velocities, it is fundamental to minimise the number of shoots per kill. For this reason a reliable technique to classify warheads and confusing objects is required. In the efficient warhead classification system presented in this paper a model and a robust framework is developed, which incorporates different microDoppler based classification techniques. The reliability of the proposed framework is tested on both simulated and real dat
Measurement of Aerosols at the Pierre Auger Observatory
The air fluorescence detectors (FDs) of the Pierre Auger Observatory are
vital for the determination of the air shower energy scale. To compensate for
variations in atmospheric conditions that affect the energy measurement, the
Observatory operates an array of monitoring instruments to record hourly
atmospheric conditions across the detector site, an area exceeding 3,000 square
km. This paper presents results from four instruments used to characterize the
aerosol component of the atmosphere: the Central Laser Facility (CLF), which
provides the FDs with calibrated laser shots; the scanning backscatter lidars,
which operate at three FD sites; the Aerosol Phase Function monitors (APFs),
which measure the aerosol scattering cross section at two FD locations; and the
Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence
of aerosol attenuation.Comment: Contribution to the 30th International Cosmic Ray Conference, Merida
Mexico, July 2007; 4 pages, 4 figure
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
- …
