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Detecting Covariance Symmetries in

Polarimetric SAR Images
Luca Pallotta, Member, IEEE, Carmine Clemente, Member, IEEE,

Antonio De Maio, Fellow, IEEE, and John J. Soraghan, Senior Member, IEEE

Abstract—The availability of multiple images of the same scene
acquired with the same radar but with different polarizations,
both in transmission and reception, has the potential to enhance
the classification, detection, and/or recognition capabilities of a
remote sensing system. A way to take advantage of the full-
polarimetric data is to extract, for each pixel of the considered
scene, the polarimetric covariance matrix, the coherence matrix,
and the Muller matrix and to exploit them in order to achieve
a specific objective. A framework for detecting covariance sym-
metries within polarimetric synthetic aperture radar (SAR) im-
ages is here proposed. The considered algorithm is based on the
exploitation of special structures assumed by the polarimetric
coherence matrix under symmetrical properties of the returns
associated with the pixels under test. The performance analysis
of the technique is evaluated on both simulated and real L-band
SAR data, showing a good classification level of the different areas
within the image.

Index Terms—Coherence and covariance scattering matrix,
polarimetric SAR image, radar image classification, synthetic
aperture radar (SAR).

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (SAR) imaging

and the information obtainable from this kind of sensor

configuration have attracted great interest from the research

and end-user communities in recent years. Benefits, provided

by the availability of multiple images of the same scene ac-

quired with the same radar but with different polarizations,

both in transmission and reception (HH, HV, and VV), include

enhancing the classification, detection, and/or recognition ca-
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pabilities of the entire system. Among the different techniques

available in open literature [1], a possible approach is to take

advantage of the full-polarimetric data extracting for each pixel

of the considered scene the polarimetric covariance matrix,

coherence matrix, Muller matrix, and so on [1]–[4], and to

use them in order to achieve a specific objective. Usually,

the quantity measured by a polarimetric radar is the well-

known scattering matrix [3] (also called the Sinclair matrix

[1, p. 63]); however, it is very useful to express the latter in

a vectorized form and compute some second-order moment-

based metrics, i.e., covariance and coherence matrices, that

can be utilized to have inference about the scattering mech-

anisms characterizing the objects in the scene of interest.

Moreover, a widely accepted processing strategy to deal with

polarimetric SAR images relies on the coherent decomposi-

tion of the polarimetric scattering matrix. In this context, the

Pauli [5], Krogager [6], and Cameron [7] decompositions play

a central role. The aim of all these decompositions is to rep-

resent the scattering matrix as a combination of the scattering

responses of independent elements (for instance, single/odd-

bounce scattering and double/even-bounce scattering), to asso-

ciate a physical mechanism with each component and to extract

relevant characteristics from polarimetric data sets.

An example of application of polarimetry can be found in [8],

where the coherence matrix is exploited for extracting average

parameters from experimental data. The algorithm is based on

a second-order statistical model that does not require any spec-

ification of the underlying multivariate statistical distribution.

In fact, it makes the assumption that, in each cell, there is

always a dominant average scattering mechanism, and then, the

parameters of this average component are estimated and related

to the physical structures of the observed objects. Another

example can be found in [9], where the use of both amplitude

and phase information of the HH, HV, and VV images is

introduced to distinguish among different scattering behaviors.

By doing so, it is possible to interpret radar images and, in

addition, to provide information aiding surface characterization

through modeling of the polarimetric response of different

types of terrain. In [10], Park et al. proposed a new model

for vegetation scattering mechanisms of mountainous forests,

extending the classic radiative transfer model and taking into

account the sloping ground surface under vegetation canopy.

Finally, many other works in the last few years use polarimetry:

for oil spill detection [11], [12], for ice thickness retrieval [13],

and for feature detection within a SAR image [14].

In this paper, we propose and analyze a framework for

detecting covariance symmetries within a polarimetric SAR

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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image, through the exploitation of special structures assumed

by the covariance (and consequently by the coherence) matrix

under symmetrical properties of the returns associated to the

pixels under analysis. Since our problem is formulated in terms

of a composite hypothesis test including nested instances, the

classic generalized maximum-likelihood (GML) approach [15]

does not prove useful. In fact, it always leads to the selection of

the hypothesis with the higher degree of uncertainty and which

incorporates the nested instances [15], [16]. To circumvent this

drawback, it is paramount to consider a modified version of

the GML to accommodate nested signal models. Specifically,

it is necessary to add to the GML (under each hypothesis) a

penalty term related to the number of parameters to estimate;

this leads to the so-called model order selection techniques

[17]–[20] to classify each pixel on the base of the corresponding

coherence matrix structure. The knowledge of the symmetry

would then allow enhanced performance for applications such

as the knowledge-based Ground Moving Target Indicator, oil

spill detection, and land cover classification.

The remainder of this paper is organized as follows. In

Section II, the problem is introduced, whereas in Section III,

the proposed framework for detecting covariance symmetries is

developed. The performance of the proposed technique applied

on simulated and real L-band SAR data is presented and

discussed in Section IV. Finally, in Section V, some concluding

remarks are given.

Notation: We adopt the notation of using boldface for vectors

a (lowercase) and matrices A (uppercase). The conjugate and

conjugate transpose operators are denoted by the symbols (·)∗
and (·)†, respectively, whereas the symbol (·)+ denotes the

pseudoinverse. tr{·} and det(·) are, respectively, the trace and

the determinant of the square matrix argument. I and 0 denote,

respectively, the identity matrix and the matrix with zero entries

(their size is determined from the context). diag (a) indicates

the diagonal matrix whose ith diagonal element is the ith entry

of a. The letter j represents the imaginary unit (i.e., j =
√
−1).

For any complex number x, |x| represents the modulus of

x, Re{x} is its real part, and Im{x} is its imaginary part.

Moreover, H++
n is the set of n× n positive semidefinite (psd)

Hermitian matrices, S++
n is the set of n× n psd symmetric

matrices, and P++
n is the set of n× n real psd persymmetric

matrices.1 Finally, E[·] denotes statistical expectation.

II. PARAMETER DEFINITION AND DATACUBE

CONSTRUCTION

A multipolarization SAR sensor, for each pixel of the im-

age under test, measures N = 3 complex returns, which are

collected from three different polarimetric channels (namely,

1A real persymmetric matrix Cn is a matrix with the following property

Cn = JC
T
nJ , with J as the n× n permutation matrix

J =
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Fig. 1. Pictorial representation of constructing the datacube for polarimetric
images.

HH, HV, and VV). The N returns associated with the same

pixel are organized in the specific order HH, HV, and VV

to form the vector X(l,m), l = 1, . . . , L and m = 1, . . . ,M
(L and M represent the vertical and horizontal sizes of the

image, respectively). Therefore, the sensor provides a 3-D data

stack X of size M × L×N , which is referred to as the

datacube in the following, whose pictorial representation is

given in Fig. 1.

Starting from the datacube X of the scene illuminated by

the radar, for each pixel under test, we extract a rectangular

neighborhood A of size K = W1 ×W2 ≥ N . We denote by

R the matrix whose columns are the vectors of the polarimetric

returns from the pixels of X that fall in region A. Matrix R

is modeled as a random matrix, whose columns are assumed to

be statistically independent and identically distributed random

vectors drawn from a complex circular zero-mean Gaussian

distribution with positive definite covariance matrix C.

III. COVARIANCE SYMMETRY DETECTION

The framework proposed in this paper uses the special

structures assumed by the covariance and, consequently, by the

corresponding coherence matrix over objects that scatter with

a specific symmetry property [1, pp. 69–72], [2]. In this sec-

tion, we illustrate such structures arising when some important

scattering symmetric properties become predominant, and then,

we introduce some algorithms that allow the detection of the

specific covariance symmetry.

We consider the polarimetric covariance matrix in the pres-

ence of a reciprocal medium [1], [2], which is a 3 × 3 Hermitian

matrix, i.e.,

C =

⎡

⎣

chhhh chhhv chhvv
c∗hhhv chvhv chvvv
c∗hhvv c∗hvvv cvvvv

⎤

⎦ (1)

completely described by n = 9 real scalar values. In fact, the di-

agonal entries of this matrix are the conventional backscattering

coefficients, which are real quantities, whereas the off-diagonal

elements are complex values.

Let us consider now the presence of a reflection symme-

try with respect to a vertical plane. It is usually observed

over horizontal natural environments and produces complete

decorrelations between the copolarized and the cross-polarized

elements (the details regarding the proof of this covariance
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structure can be found in [2]). Consequently, the covariance

matrix under reflection symmetry assumes the following special

form, which is fully described by n = 5 real scalar values, i.e.,

C =

⎡

⎣

chhhh 0 chhvv
0 chvhv 0

c∗hhvv 0 cvvvv

⎤

⎦ . (2)

From a physical point of view, this result is valid for volume

scattering, surface scattering, or volume–surface interactions to

all scattering orders or to the total scattering effects no matter

how dense is the medium or how rough is the surface as long as

the scattering configuration has the reflection symmetry [2].

Let us consider now the presence of a rotation symmetry,

which is characterized by a covariance matrix invariant un-

der the rotation around an axis by any considered angle [2].

Consequently, the polarimetric covariance matrix assumes the

following special structure, completely described by n = 3 real

scalar values, i.e.,

C =

⎡

⎣

chhhh chhhv chhvv
−chhhv chvhv chhhv
chhvv −chhhv chhhh

⎤

⎦ (3)

where chhhv is purely imaginary, chhvv is purely real, and

chvhv=(chhhh − chhvv)/2. For instance, a chiral medium made

by embedding helixes in an isotropic background can be con-

sidered as having both reciprocity and rotation symmetry [2].

Finally, the azimuth symmetry arises as the combination of

a rotation symmetry with a reflection symmetry in any plane

that contains the rotation symmetry axis. It can be observed

for dense volumetric environments [3], and the corresponding

polarimetric covariance matrix shares the following form:

C =

⎡

⎣

chhhh 0 chhvv
0 chvhv 0

chhvv 0 chhhh

⎤

⎦ (4)

where chvhv = (chhhh − chhvv)/2. Evidently, (4) is entirely

described by n = 2 real scalar values.

With the above models for the polarimetric covariance matrix

structure, we focus on the problem of data classification ex-

ploiting the scattering properties of the pixel under test and of a

set of neighborhood pixels. Specifically, we associate to each

pixel an “average” or “dominant” symmetry property on the

base of the specific structure assumed by its covariance matrix.

Moreover, to simplify the analytic tractability, we move to a

transformed matrix domain (as described in Lemma 3.1) where

some redundant information (contained in the functionally de-

pendent coefficients of the covariance) translates into zeros of

the corresponding transformed matrix. Before proceeding fur-

ther, it is necessary to define the multiple hypotheses associated

to the problem under consideration, i.e.,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

H1 : no symmetry

H2 : reflection symmetry

H3 : rotation symmetry

H4 : azimuth symmetry.

(5)

Hence, in Lemma 3.1, we show how to compute the trans-

formed matrix from the covariance and determine its structure

under the hypotheses H1, . . . , H4.

Lemma 3.1: Let us denote by

U =

⎡

⎣

1 0 0
0 0 1
0 1 0

⎤

⎦

E =

⎡

⎣

1 0 0
0 1√

2
0

0 0 1

⎤

⎦

T =
1√
2

⎡

⎣

1 0 1
1 0 −1

0
√
2 0

⎤

⎦

V =

⎡

⎣

1 0 0
0 0 j
0 1 0

⎤

⎦

four transformation matrices, where U is orthogonal, whereas

V and T are unitary.

Then, under the reflection symmetry hypothesis, we have

UCU † =

⎡

⎣

chhhh chhvv 0
c∗hhvv cvvvv 0
0 0 chvhv

⎤

⎦ =

[

C1 0

0 c

]

(6)

where C1 ∈ H++
2 , and c is a positive real number.

Under the rotation symmetry hypothesis, we have

V ETCT †EV †=

⎡

⎣

chhhh+chhvv 0 0
0 chvhv Im{chhhv}
0 Im{chhhv} chvhv

⎤

⎦

=

[

a 0

0 C2

]

(7)

where C2 ∈ P++
2 , and a is a positive real number.

Finally, under the azimuth symmetry hypothesis, we have

ETCT †E =

⎡

⎣

chhhh + chhvv 0 0
0 chvhv 0
0 0 chvhv

⎤

⎦

=

⎡

⎣

a 0 0
0 b 0
0 0 b

⎤

⎦ (8)

where b is a positive real number.

Proof: The proof is omitted since it can be obtained by

performing the matrix multiplications on the right-hand side of

(6)–(8). �

Let us consider the complex multivariate probability density

function (pdf) of the observable matrix R, i.e.,

fR(R|C) =
1

π3K [det(C)]K
exp

{

−tr (C−1RR†)
}

(9)

the Fisher–Neyman factorization theorem [15] implies that

S0 = RR† is a sufficient statistic for C.
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Now, the maximum-likelihood (ML) estimate of C can be

obtained as the optimal solution to the optimization problem,

i.e.,

max
C

log (fR(R|C)) = −Kmin
C

[

log det(C) + tr (C−1S)
]

− 3K log π (10)

where S = (1/K)S0.

The following proposition shows the form assumed by the

optimal value of problem (10), as well as the ML optimizer,

in the presence of the four different scattering symmetries

previously described.

Proposition 3.2: The optimal value of

min
C∈H++

3

[

log det(C) + tr (C−1S)
]

(11)

and the corresponding optimal solution C̆ are respectively

given by the following.

1) No symmetry:

log det(S) + 3

C̆ = S.

2) Reflection symmetry:

log det(S̄1,1) + log(S̄3,3) + 3

C̆ = U †
[

S̄1,1 0

0 S̄3,3

]

U

where S̄ = USU † =

[

S̄1,1 S̄1,3

S̄3,1 S̄3,3

]

.

3) Rotation symmetry:

log det

(

1

2
(S̃2,2 + JS̃2,2J)

)

+ log(S̃1,1) + 3 + log 2

C̆ = T †E−1V †
[

S̃1,1 0

0 1
2 (S̃2,2 + JS̃2,2J)

]

V E−1T

where S̃ = V ETST †EV † =

[

S̃1,1 S̃1,2

S̃2,1 S̃2,2

]

.

4) Azimuth symmetry:

log(Ŝ1,1) + 2 log

(

Ŝ2,2 + Ŝ3,3

2

)

+ 3 + log 2

C̆ = T †E−1diag

(

Ŝ1,1,
Ŝ2,2+Ŝ3,3

2
,
Ŝ2,2+Ŝ3,3

2

)

E−1T

where Ŝ = ETST †E, and Ŝ1,1, Ŝ2,2, and Ŝ3,3 are its

diagonal entries.

Proof: See Appendix A. �

A. Model Order Selection

As previously discussed, we are focused on a composite

multiple-hypothesis testing problem that includes both nested

and non-nested instances. The GML approach does not appear

useful for this study since the likelihood always assumes the

highest value under the H1 hypothesis. Hence, to overcome

this problem, we need to consider modified versions of the

GML to accommodate nested instances. Specifically, a penalty

function that is dependent on the number of unknown elements

to estimate is added to the GML under each hypothesis. This

leads to the so-called model order selectors2 [17]–[20] that

allow us to estimate the correct structure (the model order)

from the available observables (R in this case). Following the

above guidelines, it is necessary to evaluate a decision statistic

under each hypothesis, and then, the order is chosen as the one

which corresponds to the minimum among the four statistics.

Before proceeding further, it is worth underlying that model

order selection approaches have been already used in SAR

remote sensing applications. In this context, we mention the

works in [21]–[24] for interferometric SAR and that in [25] with

reference to double-scatterer detection in SAR tomography.

The general order selection rules proposed in [17] and [18]

can be expressed through the corresponding decision statistics

in the following compact form:

−2 log
(

f
(

R|C̆(n)
))

+ n η(n,K) (12)

with C̆
(n)

the ML estimate of C comprising of n parameters.

The term n η(n,K) is called the penalty coefficient, and its

role can be intuitively explained observing that the first term in

(12) decreases with increasing n (for nested models), whereas

the second term increases. As a consequence, n η(n,K) in

(12) penalizes overfitting [18]. Different selection strategies

diversify due to the definition of this quantity. Specifically, for

each criterion, we have the following:

• Akaike Information Criterion (AIC): η(n,K) = 2;

• Generalized Information Criterion (GIC): η(n,K) = ρ+
1, with ρ as an integer number greater than or equal to 2;

• Bayesian Information Criterion (BIC): η(n,K) =
log(K).

For the case at hand, substituting (10), obtained as described

in Proposition 3.2, in (12), it is not difficult to obtain the

following decision statistic under each hypothesis (notice that,

for simplicity, the dependence of η from n and K is omitted in

the following equations):

• H1:

2K log det(S) + 6K + 6K log(π) + 9η

• H2:

2K log det(S̄1,1)+2K log(S̄3,3)+6K+6K log(π)+5η

2We recommend to the interested reader reference [18] for a methodological
framework toward the definition of some model order selectors (together with
the corresponding penalty terms) based on the Kullback–Leibler information
criterion and the Bayesian theory.
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• H3:

2K log det

(

1

2
(S̃2,2 + JS̃2,2J)

)

+ 2K log(S̃1,1)

+ 6K + 2K log 2 + 6K log(π) + 3η

• H4:

2K log(Ŝ1,1) + 4K log

(

Ŝ2,2 + Ŝ3,3

2

)

+ 6K

+ 2K log(2) + 6K log(π) + 2η.

A remark is now necessary: For the BIC, there are two

particular assumptions on the Fisher information matrix F

of the estimation problem. They are referred to as regularity

conditions, and their validity is shown in Appendix B.

The last decision criterion considered herein is referred to

as the exponentially embedded families (EEF) approach; its

general theoretical formulation is laid down in [20], i.e.,

EEF(i)=

{

lGi
(R)−n(i)

[

log

(

lGi
(R)

n(i)

)

+1

]}

u

(

lGi
(R)

n(i)
−1

)

(13)

with

lGi
(R) = 2 log

⎛

⎝

f
(

R; C̆
(n(i))

)

f
(

R;C(0)
)

⎞

⎠ , i = 1, . . . , 4 (14)

n(i) as the number of unknown parameters under the ith hy-

pothesis, and u(·) as the Heaviside step function, i.e., u(·) = 1
if its argument is greater than 0; otherwise, it is 0. To proceed

further, it is necessary to evaluate the functions lGi
(·), i =

1, . . . , 4, in correspondence of the four hypotheses previously

defined, but before doing this, we need to introduce a dummy

hypothesis, i.e., H0, where there is no dependence on the

unknown parameters. Specifically, let us define the covariance

matrix under the H0 hypothesis, C(0) as the N -dimensional

identity matrix, i.e., C(0) = IN . With this choice, the functions

lGi
(·), i = 1, . . . , 4, become

• H1:

lG1
(R) = −2K log det(S)− 6K + 2 tr (S0)

• H2:

lG2
(R) = −2K log det(S̄1,1)

− 2K log(S̄3,3)− 6K + 2 tr (S0)

• H3:

lG3
(R) = −2K log det

(

1

2
(S̃2,2 + JS̃2,2J)

)

− 2K log(S̃1,1)− 6K − 2K log(2) + 2 tr (S0)

• H4:

lG4
(R) = −2K log(Ŝ1,1)− 4K log

(

Ŝ2,2 + Ŝ3,3

2

)

− 6K − 2K log(2) + 2 tr (S0).

Finally, for the AIC, BIC, and GIC, we select the hy-

pothesis that corresponds to the minimum decision statistic,

whereas for the EEF, we select that which corresponds to the

maximum, i.e.,

ĥAIC = argmin
h

AIC(h) (15)

ĥBIC = argmin
h

BIC(h) (16)

ĥGIC = argmin
h

GIC(h) (17)

ĥEEF = argmax
h

EEF(h) (18)

where h = 1, . . . , 4 is the index identifying the specific hypoth-

esis. In other words, for each pixel under test, the selected struc-

ture is that associated to H = Hĥ. For the sake of completeness

and to help the reader grasp all the details on the proposed

procedure, in Algorithm 1, we have explicitly reported all the

basic steps required to classify each pixel of the image. It refers

to the order selector EEF. However, it is possible to consider

other cases too, just substituting the EEF with the AIC, the

BIC, or the GIC and computing the minimum in place of the

maximum, i.e., (15)–(17) instead of (18).

Algorithm 1 Covariance Symmetry Detection

Input: K = W ×W , R (constructed as described in

Section III-A).

Output: Hĥ.

1: Compute the matrices S0, S, S̄, S̃, and Ŝ as defined in

Proposition 3.2.

2: Compute the quantities EEF(h), h=1, . . . , 4, as de-

scribed in (13).

3: Choose the index ĥ associated with the maximum EEF

as given in (18).

4: Associate to the pixel under test the label Hĥ.

IV. RESULTS

In this section, the performance of the proposed rules for

covariance symmetry detection is assessed. In particular, to

evaluate the effectiveness of the different techniques, both

simulated and real radar data are considered.

A. Analysis on Simulated Data

In this section, the performance analysis on simulated data

for the order selectors introduced in Section III-A is developed

and discussed. In particular, the probability of correct clas-

sification is estimated (resorting to Monte Carlo simulations)
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Fig. 2. Probability of correct classification (%) for a simulated scenario with K = 25 data and MC = 10
4 Monte Carlo trials.

as the ratio between the number of correct classifications and

the total number of trials MC, which is set to 104. For each

simulation run, K 3-D zero-mean complex circular Gaussian

vectors are simulated. Hence, they are colored to exhibit a

covariance matrix structure characterizing a specific hypothesis

of the testing problem. As to the theoretical covariance matrices

defining the four scenarios (no symmetry, reflection, rotation,

and azimuth symmetry), they are respectively given by

C1 =

⎡

⎣

1 0.2 + 0.3j 0.5− 0.3j
0.2− 0.3j 0.25 −0.2− 0.2j
0.5 + 0.3j −0.2 + 0.2j 0.8

⎤

⎦ (19)

C2 =

⎡

⎣

1 0 0.5− 0.3j
0 0.25 0

0.5 + 0.3j 0 0.4

⎤

⎦ (20)

C3 =

⎡

⎣

1 0.3j 0.2
−0.3j 0.4 0.3j
0.2 −0.3j 1

⎤

⎦ (21)

C4 =

⎡

⎣

1 0 0.5
0 0.25 0
0.5 0 1

⎤

⎦ . (22)

In Fig. 2, the probability of correct classification (expressed

in percentage) is reported for each of the four analyzed models,

considering K = 25 data vectors. The subplots refer, respec-

tively, to the four considered covariance scenarios, and the

performance measures are related to five order selectors, i.e.,

AIC, BIC, GIC with ρ = 2, GIC with ρ = 3, and EEF. The

results show that the EEF, GIC, and BIC approaches provide a

better performance than that achievable using the AIC. It is also

worth observing that for small values of K , all the selectors ex-

hibit a performance degradation due to the fact that the sample

covariance matrix achieves good estimation performances only

when K is sufficiently higher than N . This estimation error

becomes more impactful in cases where symmetries lead to

similar structures in the covariance matrix. This situation arises

with reference to the azimuth symmetry that shares a structure

quite close to the rotation symmetry.

To study in detail the behavior of the proposed algorithm

in the presence of a better and better covariance estimate, in

Fig. 3, we report, for each selector, the probability of correct

classification as a function of the number of looks, i.e., K .

Again, the data are simulated as in Fig. 2, i.e., zero-mean

complex circular Gaussian vectors with a covariance matrix

given by C1, C2, C3, and C4, respectively. Moreover, 104

Monte Carlo runs have been utilized.

From this analysis, it is clear that the case of symmetry

absence is almost always correctly detected, independently of

the utilized selector. Moreover, the azimuth symmetry case is

the most challenging situation; in fact, only the GIC is able

to ensure a probability of correct classification higher than

90% for small values of K . Finally, the curves show that

the performances improve as K increases, due to the better

estimation of the covariance matrix owing to the greater number

of available homogeneous data. This agrees with the intuition

that the more available information on the scene, the better the

algorithm performance.

To conclude the study on simulated data and to demonstrate

a certain degree of robustness for the proposed algorithm with

respect to the design hypotheses, we consider a mismodeling

analysis where the data deviate from the Gaussian behavior;

specifically, we model each column of matrix R, e.g., rk
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Fig. 3. Probability of correct classification (%) versus the number of data K , with MC = 10
4 Monte Carlo trials. The subplots refer to the different selectors,

whereas the curves are related to the four considered covariance scenarios, i.e., C1, C2, C3, and C4.

Fig. 4. Probability of correct classification (%) for the AIC selector versus the number of data K in a SIRV environment, with MC = 10
4 Monte Carlo trials.

The subplots refer to the different covariance scenarios, i.e., C1, C2, C3, and C4, whereas the curves refer to the four considered values of ν.

k = 1, . . . ,K , as a spherically invariant random vector (SIRV)

[26]–[28], which can be written in the following form:

rk =
√
τkgk, k = 1, . . . ,K

where τk is a positive real random variable (usually known

as texture), and gk is an N -dimensional zero-mean complex

circular Gaussian vector, whose covariance matrix is set ac-

cording to the four considered symmetry hypotheses, i.e., C1,

C2, C3, and C4, respectively. In the simulations, we assume

that τ1, τ2, . . . , τK are statistically independent. Moreover, they

follow the Gamma distribution, i.e.,

f(x) =
1

Γ(ν)

1

µν
xν−1e−x/µu(x)

where Γ(·) is the Eulerian Gamma function, and µ and ν>0 are

the scale and shape parameters, respectively (we set µ = 1/ν to
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Fig. 5. Probability of correct classification (%) for the BIC selector versus the number of data K in a SIRV environment, with MC = 10
4 Monte Carlo trials.

The subplots refer to the different covariance scenarios, i.e., C1, C2, C3, and C4, whereas the curves refer to the four considered values of ν.

Fig. 6. Probability of correct classification (%) for the GIC (with ρ = 3) selector versus the number of data K in a SIRV environment, with MC = 10
4 Monte

Carlo trials. The subplots refer to the different covariance scenarios, i.e., C1, C2, C3, and C4, whereas the curves refer to the four considered values of ν.

have a Gamma distribution with unit mean). The adopted model

for the textures implies that the amplitude pdfs of r1, . . . , rK
areK-distributed. The analysis is conducted for different values

of the shape parameter, i.e., ν = (1, 2, 5, 10), and the results are

reported in Figs. 4–7.

The curves clearly show that the GIC-, BIC-, and EEF-based

detectors outperform the AIC. Moreover, the classification in

the fourth hypothesis still remains a challenge as the structure of

C4 is quite close to that of C3. Nevertheless, this mismodeling

analysis has highlighted that even in the presence of data that

do not comply with Gaussianity, the proposed algorithm shares

some robustness and is able to grant satisfactory symmetry

classification performances.

B. Analysis on Real UAVSAR Data

In this section, the results on real SAR data are shown

and discussed. In particular, an L-band coherent polarimetric
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Fig. 7. Probability of correct classification (%) for the EEF selector versus the number of data K in a SIRV environment, with MC = 10
4 Monte Carlo trials.

The subplots refer to the different covariance scenarios, i.e., C1, C2, C3, and C4, whereas the curves refer to the four considered values of ν.

Fig. 8. Three-polarization color overlay of the UAVSAR pass
SSurge_15305_14170_007_141120_L090_CX_01.

data set3 acquired using uninhabited aerial vehicle SAR

(UAVSAR) [29] on the Southern California Coast on

November 20, 20144 is utilized. The latter contains a scene

acquired with three polarizations (HH, HV, and VV) and whose

polarimetric overlay is shown in Fig. 8.

For our analysis, the selected area of interest is a subim-

age of 2000 × 2000 pixels (i.e., L = M = 2000) containing

both terrain and sea data. For comparison purposes, the span

[1, p. 61] of such image (expressed in decibels) is reported in

Fig. 9(a), whereas in Fig. 9(b), it is represented as its H-A-α
decomposition [8] in RGB colors.

In Fig. 10, the detected symmetries for the reference image

are plotted, using the AIC, BIC, GIC (with ρ = 3), and EEF,

3The data can be downloaded at http://uavsar.jpl.nasa.gov.
4ThespecificacquisitionisSSurge_15305_14170_007_141120_L090_CX_01.

respectively, with K = 25, i.e., a 5 × 5 sliding window is

utilized. Specifically, for each pixel of the considered scene, a

specific color is indicated, which is associated to the specific

hypothesis chosen by the test.

The results show that the AIC is not able to achieve apprecia-

ble results in terms of classification of terrain data with respect

to the sea data. Moreover, the EEF turns out to be the best order

selector on this data set, because it is able to show the largest

amount of details within the image.

Reflection symmetry (blue pixels) is predominant on the

sea area in Fig. 10, whereas the terrain area is classified as

H1 or H2, which means that no symmetry (black pixels) or

reflection symmetry is detected; finally, the area separating the

sea and terrain areas is mainly classified as azimuthal symmetry

(green pixels).

C. Analysis on Real AIRSAR Data

To give an additional evidence of the effectiveness of the pro-

posed algorithm, in this section, a second real SAR data set is

analyzed, and the results are discussed. In particular, an L-band

coherent polarimetric data set5 acquired in 1988 from the Jet

Propulsion Laboratory (JPL) using an airborne SAR (AIRSAR)

on the San Francisco Bay [1], [8] is utilized. The image (900 ×
1024 pixels) contains a mixed urban, vegetation, and sea scene,

whose span is reported in Fig. 11(a). To give further information

on the considered area, in Fig. 11(b), the correspondingH-A-α
decomposition is depicted in RGB colors.

In Fig. 12, the detected symmetries are plotted using the AIC,

BIC, GIC (with ρ = 3), and EEF, respectively, with K = 25,

5The data can be downloaded at https://earth.esa.int/web/polsarpro/data-
sources/sample-datasets.
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Fig. 9. Real L-band data UAVSAR pass SSurge_15305_14170_007_141120_L090_CX_01. (a) Span and (b) RGB of the H-A-α decomposition for the reference
image of size 2000 × 2000 pixels.

Fig. 10. Real L-band data UAVSAR pass SSurge_15305_14170_007_141120_L090_CX_01. Detected symmetries within the reference image, K = 25. (a) AIC.
(b) BIC. (c) GIC, ρ = 3. (d) EEF.

i.e., a 5 × 5 sliding window. As before, for each pixel of the

considered scene, a specific color corresponds to a specific

symmetry class.

The results confirm those obtained with the UAVSAR data:

The GIC, BIC, and EEF outperform the AIC. In fact, the

different areas are clearly distinguished exploiting the BIC, the

GIC, and EEF, whereas for the AIC, some ambiguities arise

with reference to the classification of the sea.

However, comparing the BIC, GIC, and EEF assignment

results in Fig. 12 with the span image in Fig. 11, it can be
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Fig. 11. San Francisco Bay JPL (AIRSAR L-band 1988) data. (a) Span (in decibels) and (b) RGB of the H-A-α decomposition for the reference image of size
900 × 1024 pixels.

Fig. 12. Real L-band data AIRSAR San Francisco Bay JPL. Detected symmetries within the reference image, K = 25. (a) AIC. (b) BIC. (c) GIC, ρ = 3.
(d) EEF.

observed that the sea is classified as showing reflection symme-

tries (blue color). Moreover, the vegetation areas are classified

as azimuth symmetric (green color), and the urban scenes are

associated to the absence of any symmetry (black pixels). This

is probably due to the strong heterogeneity of the environment

precluding the rising of a dominant scattering symmetry. As

a final remark, the number of pixels classified with rotation

symmetry is very small.

To provide a more quantitative analysis, in Table I, the

percentage of pixels classified as sharing the same symmetry

is given for each order selector. Considering the EEF, the

table highlights that the rotation symmetry is almost never
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TABLE I
REAL L-BAND DATA (AIRSAR SAN FRANCISCO BAY JPL).

NUMBER OF PIXELS (IN PERCENTAGE OVER THE TOTAL)
SHARING A SPECIFIC SYMMETRY

observed (only 1% of the pixels). Otherwise stated, there is a

prevalence of the other symmetry classes: The percentage of

pixels classified as exhibiting a rotation symmetry is 30% (the

majority of the sea pixels), whereas 23% are azimuth symmetric

pixels mostly belonging to the vegetation areas. The remaining

pixels do not exhibit any symmetry and are mainly located in

the urban areas and in a particular sea zone where, as illustrated

in Fig. 11 (span), there are very strong returns.

D. Quantitative Comparison Between H/α and Symmetric

H/α Classification

The scope of this section is to provide a quantitative compar-

ison between the classic H/α classification and that exploiting

our algorithm as the preprocessing stage (the block diagram

illustrating the latter approach is shown in Fig. 13). Specifically,

the covariance matrix estimate utilized to perform the H/α
decomposition is that provided by the EEF selector in place of

the classic sample covariance matrix.

The H/α classification provides as output nine classes that

are explicitly defined within [1] and [8]. To have a quantitative

comparison, we compute the confusion matrix between the

two mentioned classifications assuming as “reference” class

that assigned to each pixel by the H/α algorithm, whereas the

test outcome is the class assigned by the symmetrical H/α
approach.

From the confusion matrix, reported in Table II, it appears

that the main difference between the two classifiers is in

the selection of class 5. Specifically, 31.23% of the pixels

that belonged to class 5 according to the H/α classifier are

associated to class 2 by the symmetric H/α rule. This is

tantamount to classifying pixels as high-entropy vegetation

scattering instead of medium-entropy vegetation scattering.

From the visual point of view [see Fig. 14(a) and (b)], it

appears that the symmetric H/α rule provides more delineated

borders of the vegetated region corresponding to the green

rectangle located in the middle of the left part of Fig. 14.

Moreover, structures corresponding to buildings would result

more visible in the image produced by the symmetric H/α
classification (i.e., pixels classified as 1 that are representative

of double-bounce mechanisms). As an example, the reader

could refer to the zones labeled with letters A and B within

the images in Fig. 14, where, in the case of the symmetric

H/α classifier, the de Young Museum (label A) and the Alhoa

Avenue (label B) are more visible with respect to the classic

H/α classifier. In fact, with the symmetric algorithm, they are

associated to class-1 pixels, which correspond to returns from

buildings.

E. Application for Oil Spill Symmetry Characterization

To further assess the performance of the proposed al-

gorithms and their capabilities to distinguish among differ-

ent areas within a scene, we apply them to a zone of the

GOMoil_07601_10052_101_100622_L090_CX_02 SAR im-

age that is composed of sea data containing also an oil spill. The

image has been acquired on June 22, 2010, during the British

Petroleum oil spill incident in the Gulf of Mexico (known

also as the Deepwater Horizon Oil Spill). As in the previous

analysis, this second image contains a scene acquired with all

the polarizations, and the corresponding polarimetric overlay

is reported in Fig. 15. Again, the selected area of interest is

a subimage of 2000 × 2000 pixels, whose span is displayed

in Fig. 16(a) and its H-A-α decomposition in RGB colors in

Fig. 16(b). This choice is, of course, for testing our techniques

as well as to provide some suggestions on possible applications

of the algorithm in real operative contexts.

We represent in Fig. 17 the detected symmetries for the

reference image, computed using, respectively, the AIC, BIC,

GIC (with ρ = 3), and EEF, with K = 25.

The results show that both the AIC and the BIC achieve quite

good results in terms of classification of sea data with respect

to oil spills, since the sea pixels are classified as reflection sym-

metry (blue pixels), whereas the oil spill shows some azimuthal

symmetry (green pixels) in the radar returns. However, both

the GIC and EEF outperform the AIC and BIC, with a clear

separation of the different regions within the area under test.

It is also interesting to observe a small strip characterized by

an azimuthal symmetry (green pixels) in correspondence of a

small ship transition over the sea (see the ellipse in Fig. 17).

V. CONCLUSION

We have introduced and analyzed a new framework for

detecting covariance symmetries within polarimetric SAR im-

ages. The proposed algorithm is based on the exploitation of

the special structures assumed by the polarimetric coherence

matrix whenever symmetrical properties of the returns associ-

ated to the pixels under analysis occur. Specifically, the core

of the technique is the utilization of model order selectors,

capitalizing on the coherence matrix structures, to classify each

pixel of the considered scene.

The analysis of the new technique has been conducted on

both simulated and real SAR data. In particular, the former has

shown good capabilities in correctly classifying the data in a

controlled environment. Moreover, the latter has demonstrated

the effectiveness of the approach and its flexibility to be in-

tegrated in operative context and algorithms, such as oil spill

detections.

Future research work might concern the analysis of the new

technique on other available real radar data sets such as AgriSar

data [30], as well as its integration in more complex algorithms

to produce land cover classifications. Moreover, another pos-

sible future work, very suitable for spaceborne applications,

might concern the introduction of a fifth hypothesis (H5),

accounting for the presence of acquisition noise only. In this

case, if the algorithm decides for H5, no further processing is

possible since no real information on the scene is available.



92 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 1, JANUARY 2017

Fig. 13. Block scheme of the symmetric H-α classification.

TABLE II
REAL L-BAND DATA (AIRSAR SAN FRANCISCO BAY JPL). CONFUSION

MATRIX (EXPRESSED IN PERCENTAGE) BETWEEN THE CLASSIC H/α
CLASSIFICATION AND THAT EXPLOITING OUR ALGORITHM AS

PREPROCESSING STAGE. THE VALUES IN THE

TABLE ARE EXPRESSED IN PERCENTAGE

Fig. 14. Real L-band data (AIRSAR San Francisco Bay JPL). H-α classifica-
tion. (a) H-α classifier. (b) Symmetric H-α classifier.

APPENDIX

A. Proof of Proposition 3.2

We show how the minimization problem (11) can be recast in

the presence of the considered symmetry properties, exploiting

Fig. 15. Three-polarization color overlay of the SAR image
GOMoil_07601_10052_101_100622_L090_CX_02.

the results given by Lemma 3.1. Specifically, in the case of

reflection symmetry, the minimization problem (11) can be

simplified as follows:

min
C∈H++

3

[

log det(C) + tr (C−1S)
]

= min
C1∈H++

2

[

log det (C1) + tr
(

C−1
1 S̄1,1

)]

+min
c>0

[

log (c) +
S̄3,3

c

]

= log det(S̄1,1) + log(S̄3,3) + 3. (23)

Moreover, for the case of rotation symmetry, the objective

function reduces to

log det(C) + tr
(

C−1S
)

= log det
(

V ETCT †EV †)− 2 log det (E)

+ tr
{

(

V ETCT †EV †)−1 (
V ETST †EV †)

}

= log det (C2)+log(a)−2 logdet(E)+tr
(

C−1
2 S̃2

)

+
S̃1,1

a

= log det (C2)+log(a)+log(2)+tr
(

C−1
2 S̃2

)

+
S̃1,1

a
.

Consequently, the minimization problem (11) can be ex-

pressed as follows:

min
C∈H++

3

[

log det(C) + tr (C−1S)
]

= min
C2∈S++

2 ∩P++
2

[

log det (C2) + tr
(

C−1
2 S̃2,2

)]

+ log(S̃1,1) + 1 + log(2)

= min
C2∈S++

2 ∩P++
2

[

log det (C2)

+ tr

(

C−1
2

2

(

S̃2,2 + JS̃2,2J
)

)]

+ log(S̃1,1) + 1 + log(2)

= log det

[

1

2

(

S̃2,2 + JS̃2,2J
)

]

+ log(S̃1,1) + 3 + log(2)

(24)
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Fig. 16. Real L-band data SAR image GOMoil_07601_10052_101_100622_L090_CX_02. (a) Span (in decibels) and (b) RGB of the H-A-α decomposition for
the reference image of size 2000 × 2000 pixels.

Fig. 17. Real L-band data SAR image GOMoil_07601_10052_101_100622_L090_CX_02. Detected symmetries within the reference image, K = 25. (a) AIC.
(b) BIC. (c) GIC, ρ = 3. (d) EEF.

where in the second equality, the persymmetric and real sym-

metric structure of C2 is used to claim

tr
(

C−1
2 S̃2,2

)

= tr
(

C−1
2 JS̃2,2J

)

and hence

tr
(

C−1
2 S̃2,2

)

= tr

(

C−1
2

1

2
(S̃2,2 + JS̃2,2J)

)

. (25)
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Finally, for the case of azimuth symmetry, the following

equalities hold:

log det(C) + tr (C−1S)

= log det(ETCT †E)− 2 log det(E)

+ tr
{

(ETCT †E)−1(ETST †E)
}

= log(a) + 2 log(b)+log(2)+
Ŝ1,1

a
+
Ŝ2,2 + Ŝ3,3

b
(26)

and the minimization problem (11) can be rewritten as

min
C∈H++

3

[

log det(C) + tr (C−1S)
]

= log(Ŝ1,1) + 2 log

(

Ŝ2,2 + Ŝ3,3

2

)

+ 3 + log(2). (27)

B. Computation of F and Regularity Conditions

We verify, for the BIC rule, the regularity conditions that

must hold on the Fisher information matrix F :

1) Invertibility of the Fisher Information Matrix: The ML

estimator of the parameter vector (synthetically denoted by θ̂)

is unbiased and with finite variance. Hence, by [31, Eq. (18)],

applied with H = I

I = FF+

must hold. This is true if and only if F is invertible.

2) Regularity Condition: F /K = O(1): By Slepian–Bangs

formula of [32, p. 927]

Fi,j = K tr

[

C−1(θ̂)
∂C(θ)

∂θi
C−1(θ̂)

∂C(θ)

∂θj

]

. (28)

Since C(θ̂) tends to the true covariance as K → ∞, whereas

the terms Ai = ∂C(θ)/∂θi and Aj = ∂C(θ)/∂θj do not

depend on K , we have

Fi,j

K
→ tr

[

C(θ)−1AiC(θ)−1Aj

]

= O(1). (29)
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