994 research outputs found

    Redshift-Independent Distances to Type Ia Supernovae

    Full text link
    We describe a procedure for accurately determining luminosity distances to Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure, which may be used as an extension of any of the various distance determination methods currently in use, is based on marginalizing over redshift, removing the requirement of knowing zz a priori. We demonstrate that the Hubble diagram scatter of distances measured with this technique is approximately equal to that of distances derived from conventional redshift-specific methods for a set of 60 nearby SNe Ia. This indicates that accurate distances for cosmological SNe Ia may be determined without the requirement of spectroscopic redshifts, which are typically the limiting factor for the number of SNe that modern surveys can collect. Removing this limitation would greatly increase the number of SNe for which current and future SN surveys will be able to accurately measure distance. The method may also be able to be used for high-zz SNe Ia to determine cosmological density parameters without redshift information.Comment: 12 pages, 3 figures, accepted for publication in Astrophysical Journal Letter

    Accelerated Expansion of the Universe in Gauss-Bonnet Gravity

    Full text link
    We show that in Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and without a cosmological constant, one can explain the acceleration of the expanding Universe. We first introduce a solution of the Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and no cosmological constant term in an empty (n+1)(n+1)-dimensional bulk. This solution can generate a de Sitter spacetime with curvature n(n+1)/{(n2)(n3)α}n(n+1)/\{(n-2)(n-3)|\alpha|\}. We show that an (n1)(n-1)-dimensional brane embedded in this bulk can have an expanding feature with acceleration. We also considered a 4-dimensional brane world in a 5-dimensional empty space with zero cosmological constant and obtain the modified Friedmann equations. The solution of these modified equations in matter-dominated era presents an expanding Universe with negative deceleration and positive jerk which is consistent with the recent cosmological data. We also find that for this solution, the "n"th"n"th derivative of the scale factor with respect to time can be expressed only in terms of Hubble and deceleration parameters.Comment: 12 pages, no figure, references added, typos corrected, Section 4 ammended, an appndix added, version to be appeared in Phys. Rev.

    Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant

    Full text link
    In this paper we show that one can have asymptotically de Sitter (dS), anti-de Sitter (AdS) and flat solutions in Gauss-Bonnet gravity without any need to a cosmological constant term in field equations. First, we introduce static solutions whose 3-surfaces at fixed rr and tt have constant positive (k=1k=1), negative (k=1k=-1), or zero (k=0k=0) curvature. We show that for k=±1k=\pm1, one can have asymptotically dS, AdS and flat spacetimes, while for the case of k=0k=0, one has only asymptotically AdS solutions. Some of these solutions present naked singularities, while some others are black hole or topological black hole solutions. We also find that the geometrical mass of these 5-dimensional spacetimes is m+2αkm+2\alpha | k| , which is different from the geometrical mass, mm , of the solutions of Einstein gravity. This feature occurs only for the 5-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in higher dimensions. We also add angular momentum to the static solutions with k=0k=0, and introduce the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, we introduce a class of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field which presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two rotation parameters.Comment: 13 pages, no figur

    Dark Matter Relic Abundance and Scalar-Tensor Dark Energy

    Get PDF
    Scalar-tensor theories of gravity provide a consistent framework to accommodate an ultra-light quintessence scalar field. While the equivalence principle is respected by construction, deviations from General Relativity and standard cosmology may show up at nucleosynthesis, CMB, and solar system tests of gravity. After imposing all the bounds coming from these observations, we consider the expansion rate of the universe at WIMP decoupling, showing that it can lead to an enhancement of the dark matter relic density up to few orders of magnitude with respect to the standard case. This effect can have an impact on supersymmetric candidates for dark matter.Comment: 12 pages, 13 figures; V2: references added, matches published versio

    The mass-metallicity gradient relation of early-type galaxies

    Full text link
    We present a newly observed relation between galaxy mass and radial metallicity gradients of early-type galaxies. Our sample of 51 early-type galaxies encompasses a comprehensive mass range from dwarf to brightest cluster galaxies. The metallicity gradients are measured out to one effective radius by comparing nearly all of the Lick absorption-line indices to recent models of single stellar populations. The relation shows very different behaviour at low and high masses, with a sharp transition being seen at a mass of ~ 3.5 x 10^10 M_sun (velocity dispersion of ~140 km/s, M_B ~ -19). Low-mass galaxies form a tight relation with mass, such that metallicity gradients become shallower with decreasing mass and positive at the very low-mass end. Above the mass transition point several massive galaxies have steeper gradients, but a clear downturn is visible marked by a broad scatter. The results are interpreted in comparison with competing model predictions. We find that an early star-forming collapse could have acted as the main mechanism for the formation of low-mass galaxies, with star formation efficiency increasing with galactic mass. The high-mass downturn could be a consequence of merging and the observed larger scatter a natural result of different merger properties. These results suggest that galaxies above the mass threshold of ~ 3.5 x 10^10 M_sun might have formed initially by mergers of gas-rich disc galaxies and then subsequently evolved via dry merger events. The varying efficiency of the dissipative merger-induced starburst and feedback processes have shaped the radial metallicity gradients in these high-mass systems.Comment: 5 pageg, 3 figures, accepted by ApJ Lette

    Low-mass X-ray binaries and globular clusters streamers and ARCS in NGC 4278

    Get PDF
    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50″ in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D 25 isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.Peer reviewe

    Core-collapse supernovae in low-metallicity environments and future all-sky transient surveys

    Full text link
    Aims: Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies. Methods: We determine oxygen abundances and star-formation rates for all spectroscopically typed star-forming galaxies in the Sloan Digital Sky Survey, Data Release 5, within z = 0.04. We then estimate the CCSN rates for sub-samples of galaxies with differing upper-metallicity limits. Using Monte-Carlo simulations we then predict the fraction of these CCSNe that we can expect to detect using different survey strategies. Results: Using a single 2m telescope (with a standard CCD camera) search we predict a detection rate of ~1.3 CCSNe/yr in galaxies with metallicities below 12 + log(O/H) < 8.2 which are within a volume that will allow detailed follow-up with 4m and 8m telescopes (z = 0.04). With a network of seven 2m telescopes we estimate ~9.3 CCSNe/yr could be found, although this would require more than 1,000 hrs of telescope time allocated to the network. Within the same radial distance, a volume-limited search in the future Pan-STARRS PS1 all-sky survey should uncover 12.5 CCSNe/yr in low-metallicity galaxies. Over a period of a few years this would allow a detailed comparison of their properties. We then extend our calculations to determine the total numbers of CCSNe that can potentially be found in magnitude-limited surveys with PS1 (24,000/yr, within z < 0.6), PS4 (69,000/yr, within z < 0.8) and LSST (160,000/yr, within z < 0.9) surveys.Comment: Accepted by journal Astronomy & Astrophysic

    Quintessential Inflation on the Brane and the Relic Gravity Wave Background

    Full text link
    Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by `instant preheating' (Felder, Kofman & Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a `blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane.Comment: 9 pages, 5 eps figures. Discussion and one eps figure summarizing the GB correction to steep brane world inflation added, typos corrected and references added; final version to appear in PR
    corecore