research

The mass-metallicity gradient relation of early-type galaxies

Abstract

We present a newly observed relation between galaxy mass and radial metallicity gradients of early-type galaxies. Our sample of 51 early-type galaxies encompasses a comprehensive mass range from dwarf to brightest cluster galaxies. The metallicity gradients are measured out to one effective radius by comparing nearly all of the Lick absorption-line indices to recent models of single stellar populations. The relation shows very different behaviour at low and high masses, with a sharp transition being seen at a mass of ~ 3.5 x 10^10 M_sun (velocity dispersion of ~140 km/s, M_B ~ -19). Low-mass galaxies form a tight relation with mass, such that metallicity gradients become shallower with decreasing mass and positive at the very low-mass end. Above the mass transition point several massive galaxies have steeper gradients, but a clear downturn is visible marked by a broad scatter. The results are interpreted in comparison with competing model predictions. We find that an early star-forming collapse could have acted as the main mechanism for the formation of low-mass galaxies, with star formation efficiency increasing with galactic mass. The high-mass downturn could be a consequence of merging and the observed larger scatter a natural result of different merger properties. These results suggest that galaxies above the mass threshold of ~ 3.5 x 10^10 M_sun might have formed initially by mergers of gas-rich disc galaxies and then subsequently evolved via dry merger events. The varying efficiency of the dissipative merger-induced starburst and feedback processes have shaped the radial metallicity gradients in these high-mass systems.Comment: 5 pageg, 3 figures, accepted by ApJ Lette

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/03/2019