1,290 research outputs found

    Giant Coulomb broadening and Raman lasing on ionic transitions

    Full text link
    CW generation of anti-Stokes Raman laser on a number of blue-green argon-ion lines (4p-4s, 4p-3d) has been demonstrated with optical pumping from metastable levels 3d'^2G, 3d^4F. It is found, that the population transfer rate is increased by a factor of 3-5 (and hence, the output power of such Raman laser) owing to Coulomb diffusion in the velocity space. Measured are the excitation and relaxation rates for the metastable level. The Bennett hole on the metastable level has been recorded using the probe field technique. It has been shown that the Coulomb diffusion changes shape of the contour to exponential cusp profile while its width becomes 100 times the Lorentzian one and reaches values close to the Doppler width. Such a giant broadening is also confirmed by the shape of the absorption saturation curve.Comment: RevTex 18 pages, 5 figure

    Experimental demonstration of mode structure in ultralong Raman fiber lasers

    Get PDF
    We present the first experimental demonstration of a resolvable mode structure with spacing c/2nL in the RF spectra of ultralong Raman fiber lasers. The longest ever demonstrated laser cavity (L=84km), RF peaks of ∼100 Hz width and spacing ∼1 kHz have been observed at low intracavity powers. The width of the peaks increases linearly with growing intracavity power and is almost independent of fiber length. © 2007 Optical Society of America

    Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    Get PDF
    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future work will require the validation of the developed SPM regional algorithm based on match-ups with field measurements, then the routine application to ocean colour satellite data in order to better estimate the fluxes and fate of SPM and POC delivered by the Mackenzie River to the Arctic Ocean

    Satellite Evidence of Hurricane-Induced Phytoplankton Blooms in an Oceanic Desert

    Get PDF
    The physical effects of hurricanes include deepening of the mixed layer and decreasing of the sea surface temperature in response to entrainment, curl-induced upwelling, and increased upper ocean cooling. However, the biological effects of hurricanes remain relatively unexplored. In this paper, we examine the passages of 13 hurricanes through the Sargasso Sea region of the North Atlantic during the years 1998 through 2001. Remotely sensed ocean color shows increased concentrations of surface chlorophyll within the cool wakes of the hurricanes, apparently in response to the injection of nutrients and/or biogenic pigments into the oligotrophic surface waters. This increase in post-storm surface chlorophyll concentration usually lasted 2-3 weeks before it returned to its nominal pre-hurricane level

    The decay of turbulence in rotating flows

    Get PDF
    We present a parametric space study of the decay of turbulence in rotating flows combining direct numerical simulations, large eddy simulations, and phenomenological theory. Several cases are considered: (1) the effect of varying the characteristic scale of the initial conditions when compared with the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect of helicity (correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green vortex, the Arn'old-Beltrami-Childress flow, and random flows with large-scale energy spectrum proportional to k4k^4. The decay laws obtained in the simulations for the energy, helicity, and enstrophy in each case can be explained with phenomenological arguments that separate the decay of two-dimensional from three-dimensional modes, and that take into account the role of helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation and helicity in the skewness and kurtosis of the flow is considered.Comment: Sections reordered to address comments by referee

    Adoption, Maintenance and Diffusion of Stormwater Best Management Practices: Rain Barrels

    Get PDF
    Urbanization increases the volume of stormwater runoff from homes, businesses and other paved areas of the urbanized landscape. Unable to infiltrate into the ground, stormwater is directed to facilities that can easily become overloaded and cause a variety of water quality issues. This study aims to assess urban homeowners’ motivations to adopt and maintain rain barrels, a stormwater best management practice (BMP), and evaluate how this BMP diffuses throughout a community. This research took place in the Great Bend of the Wabash River (Lafayette-West Lafayette, Indiana) and Salt Creek (Valparaiso, Indiana) watersheds and featured a mail survey of 571 residents, site performance evaluations of 130 rain barrels, a “windshield” assessment of 242 rain barrels, and 31 in-person interviews. Our results show that 88% of homeowners in the Great Bend of the Wabash River watershed have maintained their rain barrels after two years and 65% of homeowners in Salt Creek watershed after 5 years. One of the biggest issues homeowners had with maintaining their rain barrels were issues with water pressure. We also found that 94% of rain barrel owners maintain a flower or vegetable garden and their primary motivation for adopting a rain barrel was to reduce water use for their yard or house. Outreach may need to focus more on the importance of maintaining the rain barrels as well as emphasizing the connection between rain barrels and personal gardening

    Lasing on the D_2 line of sodium in helium atmosphere due to optical pumping on the D_1 line (up-conversion)

    Get PDF
    A new method is proposed to produce population inversion on transitions involving the ground state of atoms. The method is realized experimentally with sodium atoms. Lasing at the frequency corresponding to the sodium D_2 line is achieved in the presence of pump radiation resonant to the D_1 line with helium as a buffer gas.Comment: 4 pages, 4 figures, Late

    Multi-scale analysis of compressible viscous and rotating fluids

    Full text link
    We study a singular limit for the compressible Navier-Stokes system when the Mach and Rossby numbers are proportional to certain powers of a small parameter \ep. If the Rossby number dominates the Mach number, the limit problem is represented by the 2-D incompressible Navier-Stokes system describing the horizontal motion of vertical averages of the velocity field. If they are of the same order then the limit problem turns out to be a linear, 2-D equation with a unique radially symmetric solution. The effect of the centrifugal force is taken into account
    corecore