We present a parametric space study of the decay of turbulence in rotating
flows combining direct numerical simulations, large eddy simulations, and
phenomenological theory. Several cases are considered: (1) the effect of
varying the characteristic scale of the initial conditions when compared with
the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect
of helicity (correlation between the velocity and vorticity); (3) the effect of
Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial
conditions. Initial conditions include the Taylor-Green vortex, the
Arn'old-Beltrami-Childress flow, and random flows with large-scale energy
spectrum proportional to k4. The decay laws obtained in the simulations for
the energy, helicity, and enstrophy in each case can be explained with
phenomenological arguments that separate the decay of two-dimensional from
three-dimensional modes, and that take into account the role of helicity and
rotation in slowing down the energy decay. The time evolution of the energy
spectrum and development of anisotropies in the simulations are also discussed.
Finally, the effect of rotation and helicity in the skewness and kurtosis of
the flow is considered.Comment: Sections reordered to address comments by referee