343 research outputs found
A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges
Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP) river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC) and other sources, while the terrestrial water storage (TWS) variations derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage) come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA) land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data
Critical test of multi-{\it j} supersymmetries from magnetic moment measurements
Magnetic moment measurements in odd nuclei directly probe the distribution of
fermion states and hence provide one of the most critical tests for multi-
supersymmetries in collective nuclei. Due to complexity of calculations and
lack of data, such tests have not been performed in the past. Using the
Mathematica software, we derive analytic expressions for magnetic moments in
the limit of the supersymmetry and
compare the results with recent measurements in Pt.Comment: 10 pages with 1 figur
Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment
In this research, the specific electrodes were prepared by metal-organic chemical vapor deposition (MOCVD) in a hot-wall CVD reactor with the presence of O2 under reduced pressure. The Ir protective layer was deposited by using (Methylcyclopentadienyl) (1,5-cyclooctadiene) iridium (I), (MeCp)Ir(COD), as precursor. Tetraethyltin (TET) was used as precursor for the deposition of SnO2 active layer. The optimum condition for Ir film deposition was at 300 °C, 125 of O2/(MeCp)Ir(COD) molar ratio and 12 Torr of total pressure. While that of SnO2 active layer was at 380 °C, 1200 of O2/TET molar ratio and 15 Torr of total pressure. The prepared SnO2/Ir/Ti electrodes were tested for anodic oxidation of organic pollutant in a simple three-electrode electrochemical reactor using oxalic acid as model solution. The electrochemical experiments indicate that more than 80% of organic pollutant was removed after 2.1 Ah/L of charge has been applied. The kinetic investigation gives a two-step process for organic pollutant degradation, the kinetic was zero-order and first-order with respect to TOC of model solution for high and low TOC concentrations, respectively
ReCROP: bioinocula and CROPping systems: an integrated biotechnological approach for improving crop yield, biodiversity and REsilience of Mediterranean agro-ecosystems
The Mediterranean economy is highly dependent on agriculture. However, agricultural sustainability and productivity in this region is under serious threat due to climate change and the depletion of water resources. This is worsened by poor management practices, such as the overuse of chemical fertilizers, pesticides, overgrazing and monoculture farming. Recent climate change models indicate that European and Northern African regions will undergo extreme climatic events throughout the year, this will negatively impact crop yield and productivity. Summer droughts and heat waves periods will increase for most parts of Europe, as well as short intense rain events. Preserving and improving productive agricultural land in this region is vital, especially through the application of sustainable soil and crop management practices that promote soil fertility and water conservation; this will improve resilience to degradation and to extreme climatic events. ReCROP is a European project that aims to identify sustainable and resilient agricultural production systems in the Mediterranean region through the combined use of biotechnological tools, such as bioinoculants, and environmentally friendly agronomic practices. ReCROP will assess different agroecosystems with key local crops (i.e vineyards, maize and aromatic/medicinal plants) of the Mediterranean region under field conditions to help improve crop resilience, yield, water conservation and soil health under the current scenario of climate change. Soil organisms play a key role in ecosystem processes, leading to essential soil functions and are used as bioindicators of soil quality. Their monitoring is crucial to assess the impact of beneficial agricultural practices on soil functioning. One of the goals of ReCROP will be to evaluate the beneficial impact of different agricultural practices on the structural and functional soil diversity at different levels of the soil food web. The macrofauna and mesofauna (i.e springtails and mites) as well as microbial biomass, activity and biodiversity of soil microbial communities (bacteria, archaea, fungi) will be monitored with a special effort to produce a multitaxa index of soil biological quality. This work will contribute to identify which practices are beneficial for the biodiversity of Mediterranean agricultural soils, thus providing resistance and resilience, in terms of soil functioning and against soil disturbances.info:eu-repo/semantics/publishedVersio
A new look at nuclear supersymmetry though transfer experiments
Nuclear supersymmetry is reviewed and some of its applications and extensions
are discussed, together with a proposal for new, more stringent and precise
tests to probe the supersymmetry classification, in particular, correlations
between nuclei that belong to the same supermultiplet. The combination of these
theoretical and experimental studies may play a unifying role in nuclear
phenomenaComment: 13 pages, 3 figures, 2 table
Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding
Background: Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma.
Methodology/Principal Findings: Apoe(-/-) and Apoe(-/-)/IL-1R1(-/-) mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe(-/-)/IL-R1(-/-) mice had a reduced blood pressure and significantly less atheroma than Apoe(-/-) mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress.
Conclusions/Significance: The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man
Dynamic modeling of the reactive twin-screw co-rotating extrusion process: experimental validation by using inlet glass fibers injection response and application to polymers degassing
International audienceIn this paper is described an original dynamic model of a reactive co-rotating twinscrew extrusion (TSE) process operated by the Rhodia company for the Nylon-66 degassing finishing step. In order to validate the model, dynamic experiments have been performed on a small-scale pilot plant. These experiments consist in a temporary injection of glass fibers at the inlet of the extruder after it has reached a given operating point. The outlet glass fibers mass fraction time variation is then measured. This experiment does not lead to the RTD measurement. As a matter of fact, due to the high quantity of glass fibers that is introduced, the behavior of the flow through the extruder is perturbed so that the glass fibers cannot be considered as an inert tracer. The dynamic model that we have published elsewhere (Choulak et al., Ind. Eng. Chem. Res., 2004, 43(23), 7373-7382) is adapted to take into account this nonlinear behavior of the extruder with respect to the glass fibers injection and is favorably compared to experimental results. The description of the degassing operation is also included in the model. The model allows simulations of the complete dynamic behavior of the process. When the steady state is reached, the good position of the degassing vent with respect to the partially and fully filled zones positions can also be checked, thus illustrating the way the model can be used for design purposes
Frequency and Risk Indicators of Tooth Decay among Pregnant Women in France: A Cross-Sectional Analysis
INTRODUCTION: Little is known on the prevalence of tooth decay among pregnant women. Better knowledge of tooth decay risk indicators during pregnancy could help to develop follow-up protocols for women at risk, along with better prevention strategies. The aim of this study was to assess the frequency of tooth decay and the number of decayed teeth per woman in a large sample of pregnant women in France, and to study associated risk indicators. METHODS: A secondary cross-sectional analysis of data from a French multicentre case-control study was performed. The sample was composed of 1094 at-term women of six maternity units. A dental examination was carried out within 2 to 4 days post-partum. Socio-demographic and behavioural characteristics were obtained through a standardised interview with the women. Medical characteristics were obtained from the women's medical records. Risk indicators associated with tooth decay were identified using a negative binomial hurdle model. RESULTS: 51.6% of the women had tooth decay. The mean number of decayed teeth among women having at least one was 3.1 (s.d. = 2.8). Having tooth decay was statistically associated with lower age (aOR = 1.58, 95%CI [1.03,2.45]), lower educational level (aOR = 1.53, 95%CI [1.06,2.23]) and dental plaque (aOR = 1.75, 95%CI [1.27,2.41]). The number of decayed teeth was associated with the same risk indicators and with non-French nationality and inadequate prenatal care. DISCUSSION: The frequency of tooth decay and the number of decayed teeth among pregnant women were high. Oral health promotion programmes must continue to inform women and care providers about the importance of dental care before, during and after pregnancy. Future research should also assess the effectiveness of public policies related to oral health in target populations of pregnant women facing challenging social or economic situations
- …