415 research outputs found

    Contrasting transcriptional programs control postharvest development of apples (Malus x domestica Borkh.) submitted to cold storage and ethylene blockage.

    Get PDF
    Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes. KEYWORDS: 1-methylcyclopropene, firmness, fruit quality, gene expression, microarra

    Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple

    Get PDF
    Background The transition from vegetative to floral state in shoot apical meristems (SAM) is a key event in plant development and is of crucial importance for reproductive success. In perennial plants, this event is recurrent during tree life and subject to both within-tree and between-years heterogeneity. In the present study, our goal was to identify candidate processes involved in the repression or induction of flowering in apical buds of adult apple trees. Results Genes differentially expressed (GDE) were examined between trees artificially set in either ‘ON’ or ‘OFF’ situation, and in which floral induction (FI) was shown to be inhibited or induced in most buds, respectively, using qRT-PCR and microarray analysis. From the period of FI through to flower differentiation, GDE belonged to four main biological processes (i) response to stimuli, including response to oxidative stress; (ii) cellular processes, (iii) cell wall biogenesis, and (iv) metabolic processes including carbohydrate biosynthesis and lipid metabolic process. Several key regulator genes, especially TEMPRANILLO (TEM), FLORAL TRANSITION AT MERISTEM (FTM1) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) were found differentially expressed. Moreover, homologs of SPL and Leucine-Rich Repeat proteins were present under QTL zones previously detected for biennial bearing. Conclusions This data set suggests that apical buds of ‘ON’ and ‘OFF’ trees were in different physiological states, resulting from different metabolic, hormonal and redox status which are likely to contribute to FI control in adult apple trees. Investigations on carbohydrate and hormonal fluxes from sources to SAM and on cell detoxification process are expected to further contribute to the identification of the underlying physiological mechanisms of FI in adult apple trees

    A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth

    Get PDF
    Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins

    CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform

    Get PDF
    CATdb is a free resource available at http://urgv.evry.inra.fr/CATdb that provides public access to a large collection of transcriptome data for Arabidopsis thaliana produced by a single Complete Arabidopsis Transcriptome Micro Array (CATMA) platform. CATMA probes consist of gene-specific sequence tags (GSTs) of 150–500 bp. The v2 version of CATMA contains 24 576 GST probes representing most of the predicted A. thaliana genes, and 615 probes tiling the chloroplastic and mitochondrial genomes. Data in CATdb are entirely processed with the same standardized protocol, from microarray printing to data analyses. CATdb contains the results of 53 projects including 1724 hybridized samples distributed between 13 different organs, 49 different developmental conditions, 45 mutants and 63 environmental conditions. All the data contained in CATdb can be downloaded from the web site and subsets of data can be sorted out and displayed either by keywords, by experiments, genes or lists of genes up to 100. CATdb gives an easy access to the complete description of experiments with a picture of the experiment design

    The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse

    Get PDF
    Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases

    Tree planting in organic soils does not result in net carbon sequestration on decadal timescales

    Get PDF
    Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris ), of widespread Eurasian distribution, onto heather (Calluna vulgaris ) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens ; and no net gain at additional stands of P. sylvestris . We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes

    Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1

    Get PDF
    Plant development and function are underpinned by redox reactions that depend on co-factors such as nicotinamide adenine dinucleotide (NAD). NAD has recently been shown to be involved in several signalling pathways that are associated with stress tolerance or defence responses. However, the mechanisms by which NAD influences plant gene regulation, metabolism and physiology still remain unclear. Here, we took advantage of Arabidopsis thaliana lines that overexpressed the nadC gene from E. coli, which encodes the NAD biosynthesis enzyme quinolinate phosphoribosyltransferase (QPT). Upon incubation with quinolinate, these lines accumulated NAD and were thus used as inducible systems to determine the consequences of an increased NAD content in leaves. Metabolic profiling showed clear changes in several metabolites such as aspartate-derived amino acids and NAD-derived nicotinic acid. Large-scale transcriptomic analyses indicated that NAD promoted the induction of various pathogen-related genes such as the salicylic acid (SA)-responsive defence marker PR1. Extensive comparison with transcriptomic databases further showed that gene expression under high NAD content was similar to that obtained under biotic stress, eliciting conditions or SA treatment. Upon inoculation with the avirulent strain of Pseudomonas syringae pv. tomato Pst-AvrRpm1, the nadC lines showed enhanced resistance to bacteria infection and exhibited an ICS1-dependent build-up of both conjugated and free SA pools. We therefore concluded that higher NAD contents are beneficial for plant immunity by stimulating SA-dependent signalling and pathogen resistance
    • 

    corecore