1,266 research outputs found

    Electron transport through multilevel quantum dot

    Full text link
    Quantum transport properties through some multilevel quantum dots sandwiched between two metallic contacts are investigated by the use of Green's function technique. Here we do parametric calculations, based on the tight-binding model, to study the transport properties through such bridge systems. The electron transport properties are significantly influenced by (a) number of quantized energy levels in the dots, (b) dot-to-electrode coupling strength, (c) location of the equilibrium Fermi energy EFE_F and (d) surface disorder. In the limit of weak-coupling, the conductance (gg) shows sharp resonant peaks associated with the quantized energy levels in the dots, while, they get substantial broadening in the strong-coupling limit. The behavior of the electron transfer through these systems becomes much more clearly visible from our study of current-voltage (II-VV) characteristics. In this context we also describe the noise power of current fluctuations (SS) and determine the Fano factor (FF) which provides an important information about the electron correlation among the charge carriers. Finally, we explore a novel transport phenomenon by studying the surface disorder effect in which the current amplitude increases with the increase of the surface disorder strength in the strong disorder regime, while, the amplitude decreases in the limit of weak disorder. Such an anomalous behavior is completely opposite to that of bulk disordered system where the current amplitude always decreases with the disorder strength. It is also observed that the current amplitude strongly depends on the system size which reveals the finite quantum size effect.Comment: 12 pages, 7 figure

    Low temperature heat capacity of Fe_{1-x}Ga_{x} alloys with large magneostriction

    Full text link
    The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron (γT\gamma T) and phonon (βT3\beta T^{3}) contributions. The Debye temperature ΘD\Theta_{D} decreases approximately linearly with increasing Ga concentration, consistent with previous resonant ultrasound measurements and measured phonon dispersion curves. Calculations of ΘD\Theta_{D} from lattice dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44} are in agreement with the measured data. The linear coefficient of electronic specific heat γ\gamma remains relatively constant as the Ga concentration increases, despite the fact that the magnetoelastic coupling increases. Band structure calculations show that this is due to the compensation of majority and minority spin states at the Fermi level.Comment: 14 pages, 6 figure

    Beyond universality: parametrizing ultracold complex-mediated reactions using statistical assumptions

    Full text link
    We have calculated accurate quantum reactive and elastic cross-sections for the prototypical barrierless reaction D+^{+} + H2_2(vv=0, jj=0) using the hyperspherical scattering method. The considered kinetic energy ranges from the ultracold to the Langevin regimes. The availability of accurate results for this system allows to test the quantum theory by Jachymski et al. [Phys. Rev. Lett. 110, 213202 (2013)] in a nonuniversal case. The short range reaction probability is rationalized using statistical model assumptions and related to a statistical factor. This provides a means to estimate one of the parameters that characterizes ultracold processes from first principles. Possible limitations of the statistical model are considered

    Physical Conditions in Orion's Veil

    Get PDF
    Orion's veil consists of several layers of largely neutral gas lying between us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I absorption and in optical and UV absorption lines of H I and other species. Toward the Trapezium, the veil has two remarkable properties, high magnetic field (~100 microGauss) and a surprising lack of molecular hydrogen given its total hydrogen column density. Here we compute photoionization models of the veil to establish its gas density and its distance from the Trapezium. We use a greatly improved model of the hydrogen molecule that determines level populations in ~1e5 rotational/vibrational levels and provides improved estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our best fit photoionization models place the veil 1-3 pc in front of the star at a density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of non-thermal motions in at least one of the 21cm H I velocity components. Therefore, the veil is the first interstellar environment where magnetic dominance appears to exist. We find that the low ratio of molecular to atomic hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due to its proximity to the Trapezium stars and the absence of small grains in the region.Comment: 45 pages, 20 figures, accepted for publication in Ap

    Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium

    Full text link
    Orion's Veil is an absorbing screen that lies along the line of sight to the Orion H II region. It consists of two or more layers of gas that must lie within a few parsecs of the Trapezium cluster. Our previous work considered the Veil as a whole and found that the magnetic field dominates the energetics of the gas in at least one component. Here we use high-resolution STIS UV spectra that resolve the two velocity components in absorption and determine the conditions in each. We derive a volume hydrogen density, 21 cm spin temperature, turbulent velocity, and kinetic temperature, for each. We combine these estimates with magnetic field measurements to find that magnetic energy significantly dominates turbulent and thermal energies in one component, while the other component is close to equipartition between turbulent and magnetic energies. We observe molecular hydrogen absorption for highly excited v, J levels that are photoexcited by the stellar continuum, and detect blueshifted S III and P III. These ions must arise from ionized gas between the mostly neutral portions of the Veil and the Trapezium and shields the Veil from ionizing radiation. We find that this layer of ionized gas is also responsible for He I absorption in the Veil, which resolves a 40-year-old debate on the origin of He I absorption towards the Trapezium. Finally, we determine that the ionized and mostly atomic layers of the Veil will collide in less than 85,000 years.Comment: 43 pages, 15 figures, to be published in Ap

    Cancer and renal insufficiency results of the BIRMA study

    Get PDF
    Background: Half of anticancer drugs are predominantly excreted in urine. Dosage adjustment in renal insufficiency (RI) is, therefore, a crucial issue. Moreover, patients with abnormal renal function are at high risk for drug-induced nephrotoxicity. The Belgian Renal Insufficiency and Anticancer Medications (BIRMA) study investigated the prevalence of RI in cancer patients, and the profile/dosing of anticancer drugs prescribed. Methods:Primary end point: to estimate the prevalence of abnormal glomerular filtration rate (GFR; estimated with the abbreviated Modification of Diet in Renal Disease formula) and RI in cancer patient. Secondary end point: to describe the profile of anticancer drugs prescribed (dose reduction/nephrotoxicity). Data were collected for patients presenting at one of the seven Belgian BIRMA centres in March 2006. Results: A total of 1218 patients were included. The prevalence of elevated SCR (1.2 mg per 100 ml) was 14.9%, but 64.0% had a GFR90 ml min 1 per 1.73 m 2. In all, 78.6% of treated patients (n1087) were receiving at least one drug needing dosage adjustment and 78.1% received at least one nephrotoxic drug. In all, 56.5% of RI patients receiving chemotherapy requiring dose reduction in case of RI did not receive dose adjustment. Conclusions: The RI is highly frequent in cancer patients. In all, 80% of the patients receive potentially nephrotoxic drugs and/or for which dosage must be adjusted in RI. Oncologists should check the appropriate dose of chemotherapeutic drugs in relation to renal function before prescribing. © 2010 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup
    • …
    corecore