Quantum transport properties through some multilevel quantum dots sandwiched
between two metallic contacts are investigated by the use of Green's function
technique. Here we do parametric calculations, based on the tight-binding
model, to study the transport properties through such bridge systems. The
electron transport properties are significantly influenced by (a) number of
quantized energy levels in the dots, (b) dot-to-electrode coupling strength,
(c) location of the equilibrium Fermi energy EF and (d) surface disorder. In
the limit of weak-coupling, the conductance (g) shows sharp resonant peaks
associated with the quantized energy levels in the dots, while, they get
substantial broadening in the strong-coupling limit. The behavior of the
electron transfer through these systems becomes much more clearly visible from
our study of current-voltage (I-V) characteristics. In this context we also
describe the noise power of current fluctuations (S) and determine the Fano
factor (F) which provides an important information about the electron
correlation among the charge carriers. Finally, we explore a novel transport
phenomenon by studying the surface disorder effect in which the current
amplitude increases with the increase of the surface disorder strength in the
strong disorder regime, while, the amplitude decreases in the limit of weak
disorder. Such an anomalous behavior is completely opposite to that of bulk
disordered system where the current amplitude always decreases with the
disorder strength. It is also observed that the current amplitude strongly
depends on the system size which reveals the finite quantum size effect.Comment: 12 pages, 7 figure