247 research outputs found
Dust Properties and Star-Formation Rates in Star-Forming Dwarf Galaxies
We have used the Spitzer Space Telescope to study the dust properties of a
sample of star-forming dwarf galaxies. The differences in the mid-infrared
spectral energy distributions for these galaxies which, in general, are low
metallicity systems, indicate differences in the physical properties, heating,
and/or distribution of the dust. Specifically, these galaxies have more hot
dust and/or very small grains and less PAH emission than either spiral or
higher luminosity starburst galaxies. As has been shown in previous studies,
there is a gradual decrease in PAH emission as a function of metallicity.
Because much of the energy from star formation in galaxies is re-radiated in
the mid-infrared, star-formation rate indicators based on both line and
continuum measurements in this wavelength range are coming into more common
usage. We show that the variations in the interstellar medium properties of
galaxies in our sample, as measured in the mid-infrared, result in over an
order of magnitude spread in the computed star-formation rates.Comment: 25 pages, 11 figures, 4 tables, ApJ accepte
Direct Measurement of the Photon Statistics of a Triggered Single Photon Source
We studied intensity fluctuations of a single photon source relying on the
pulsed excitation of the fluorescence of a single molecule at room temperature.
We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of
observation timescale T, by recording every photocount. On timescale of a few
excitation periods, subpoissonian statistics is clearly observed and the
probablility of two-photons events is 10 times smaller than Poissonian pulses.
On longer times, blinking in the fluorescence, due to the molecular triplet
state, produces an excess of noise.Comment: 4 pages, 3 figures, 1 table submitted to Physical Review Letter
The AGN Contribution to the Mid-IR Emission of Luminous Infrared Galaxies
We determine the contribution of AGN to the mid-IR emission of luminous
infrared galaxies (LIRGs) at z>0.6 by measuring the mid-IR dust continuum slope
of 20,039 mid-IR sources. The 24 micron sources are selected from a
Spitzer/MIPS survey of the NOAO Deep Wide-Field Survey Bo\"otes field and have
corresponding 8 micron data from the IRAC Shallow Survey. There is a clear
bimodal distribution in the 24 micron to 8 micron flux ratio. The X-ray
detected sources fall within the peak corresponding to a flat spectrum in
nufnu, implying that it is populated by AGN-dominated LIRGs, whereas the peak
corresponding to a higher 24 micron to 8 micron flux ratio is likely due to
LIRGs whose infrared emission is powered by starbursts. The 24 micron emission
is increasingly dominated by AGN at higher 24 micron flux densities (f_24): the
AGN fraction of the z>0.6 sources increases from ~9% at f_24 ~ 0.35 mJy to
74+/-20% at f_24 ~ 3 mJy in good agreement with model predictions. Deep 24
micron, small area surveys, like GOODS, will be strongly dominated by starburst
galaxies. AGN are responsible for ~ 3-7% of the total 24 micron background.Comment: 6 pages, accepted for publication in Ap
A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2
Observations with Spitzer Space Telescope have recently revealed a
significant population of high-redshift z~2 dust-obscured galaxies (DOGs) with
large mid-IR to UV luminosity ratios. These galaxies have been missed in
traditional optical studies of the distant universe. We present a simple method
for selecting this high-z population based solely on the ratio of the observed
mid-IR 24um to optical R-band flux density. In the 8.6 sq.deg Bootes NDWFS
Field, we uncover ~2,600 DOG candidates (= 0.089/sq.arcmin) with 24um flux
densities F24>0.3mJy and (R-[24])>14 (i.e., F[24]/F[R] > 1000). These galaxies
have no counterparts in the local universe, and become a larger fraction of the
population at fainter F24, representing 13% of the sources at 0.3~mJy. DOGs
exhibit evidence of both star-formation and AGN activity, with the brighter
24um sources being more AGN- dominated. We have measured spectroscopic
redshifts for 86 DOGs, and find a broad z distribution centered at ~2.0.
Their space density is 2.82E-5 per cubic Mpc, similar to that of bright
sub-mm-selected galaxies at z~2. These redshifts imply very large luminosities
LIR>~1E12-14 Lsun. DOGs contribute ~45-100% of the IR luminosity density
contributed by all z~2 ULIRGs, suggesting that our simple selection criterion
identifies the bulk of z~2 ULIRGs. DOGs may be the progenitors of ~4L*
present-day galaxies seen undergoing a luminous,short- lived phase of bulge and
black hole growth. They may represent a brief evolution phase between SMGs and
less obscured quasars or galaxies. [Abridged]Comment: Accepted for publication in the Astrophysical Journa
The Cosmic Far-Infrared Background Buildup Since Redshift 2 at 70 and 160 microns in the COSMOS and GOODS fields
The Cosmic Far-Infrared Background (CIB) at wavelengths around 160 {\mu}m
corresponds to the peak intensity of the whole Extragalactic Background Light,
which is being measured with increasing accuracy. However, the build up of the
CIB emission as a function of redshift, is still not well known. Our goal is to
measure the CIB history at 70 {\mu}m and 160 {\mu}m at different redshifts, and
provide constraints for infrared galaxy evolution models. We use complete deep
Spitzer 24 {\mu}m catalogs down to about 80 {\mu}Jy, with spectroscopic and
photometric redshifts identifications, from the GOODS and COSMOS deep infrared
surveys covering 2 square degrees total. After cleaning the Spitzer/MIPS 70
{\mu}m and 160 {\mu}m maps from detected sources, we stacked the far-IR images
at the positions of the 24 {\mu}m sources in different redshift bins. We
measured the contribution of each stacked source to the total 70 and 160 {\mu}m
light, and compare with model predictions and recent far-IR measurements made
with Herschel/PACS on smaller fields. We have detected components of the 70 and
160 {\mu}m backgrounds in different redshift bins up to z ~ 2. The contribution
to the CIB is maximum at 0.3 <= z <= 0.9 at 160{\mu}m (and z <= 0.5 at 70
{\mu}m). A total of 81% (74%) of the 70 (160) {\mu}m background was emitted at
z < 1. We estimate that the AGN relative contribution to the far-IR CIB is less
than about 10% at z < 1.5. We provide a comprehensive view of the CIB buildup
at 24, 70, 100, 160 {\mu}m. IR galaxy models predicting a major contribution to
the CIB at z < 1 are in agreement with our measurements, while our results
discard other models that predict a peak of the background at higher redshifts.
Our results are available online http://www.ias.u-psud.fr/irgalaxies/ .Comment: Accepted in Astronomy & Astrophysic
The Evolution of Galaxy Mergers and Morphology at z<1.2 in the Extended Groth Strip
We present the quantitative rest-frame B morphological evolution and galaxy
merger fractions at 0.2 < z < 1.2 as observed by the All-wavelength Extended
Groth Strip International Survey (AEGIS). We use the Gini coefficent and M_20
to identify major mergers and classify galaxy morphology for a volume-limited
sample of 3009 galaxies brighter than 0.4 L_B^*, assuming pure luminosity
evolution of 1.3 M_B per unit redshift. We find that the merger fraction
remains roughly constant at 10 +/- 2% for 0.2 < z < 1.2. The fraction of
E/S0/Sa increases from 21+/- 3% at z ~ 1.1 to 44 +/- 9% at z ~ 0.3, while the
fraction of Sb-Ir decreases from 64 +/- 6% at z ~ 1.1 to 47 +/- 9% at z ~ 0.3.
The majority of z 10^11 L_sun
are disk galaxies, and only ~ 15% are classified as major merger candidates.
Edge-on and dusty disk galaxies (Sb-Ir) are almost a third of the red sequence
at z ~ 1.1, while E/S0/Sa makeup over 90% of the red sequence at z ~ 0.3.
Approximately 2% of our full sample are red mergers. We conclude (1) the galaxy
merger rate does not evolve strongly between 0.2 < z < 1.2; (2) the decrease in
the volume-averaged star-formation rate density since z ~ 1 is a result of
declining star-formation in disk galaxies rather than a disappearing population
of major mergers; (3) the build-up of the red sequence at z < 1 can be
explained by a doubling in the number of spheroidal galaxies since z ~ 1.2.Comment: 24 pages, including 3 tables and 18 color figures; accepted to the
Astrophysical Journal; high resolution version available at
http://www.noao.edu/noao/staff/lotz/lotz_mergers.pd
Towards an understanding of the rapid decline of the cosmic star formation rate
We present a first analysis of deep 24 micron observations with the Spitzer
Space Telescope of a sample of nearly 1500 galaxies in a thin redshift slice,
0.65<z<0.75. We combine the infrared data with redshifts, rest-frame
luminosities, and colors from COMBO-17, and with morphologies from Hubble Space
Telescope images collected by the GEMS and GOODS projects. To characterize the
decline in star-formation rate (SFR) since z~0.7, we estimate the total thermal
infrared (IR) luminosities, SFRs, and stellar masses for the galaxies in this
sample. At z~0.7, nearly 40% of intermediate and high-mass galaxies (with
stellar masses >2x10^10 solar masses) are undergoing a period of intense star
formation above their past-averaged SFR. In contrast, less than 1% of
equally-massive galaxies in the local universe have similarly intense star
formation activity. Morphologically-undisturbed galaxies dominate the total
infrared luminosity density and SFR density: at z~0.7, more than half of the
intensely star-forming galaxies have spiral morphologies, whereas less than
\~30% are strongly interacting. Thus, a decline in major-merger rate is not the
underlying cause of the rapid decline in cosmic SFR since z~0.7. Physical
properties that do not strongly affect galaxy morphology - for example, gas
consumption and weak interactions with small satellite galaxies - appear to be
responsible.Comment: To appear in the Astrophysical Journal 1 June 2005. 14 pages with 8
embedded figure
IRAC Imaging of Lockman Hole
IRAC imaging of a 4'7x4'7 area in the Lockman Hole detected over 400 galaxies
in the IRAC 3.6 micron and 4.5 micron bands, 120 in the 5.8 micron, and 80 in
the 8 micron bandin 30 minutes of observing time. Color-color diagrams suggest
that about half of these galaxies are at redshifts 0.6<z<1.3 with about a
quarter at higher redshifts (z>1.3). We also detect IRAC counterparts for 6 of
the 7 SCUBA sources and all 9 XMM sources in this area. The detection of the
counterparts of the SCUBA sources and galaxies at z>1.3 demonstrates the
ability of IRAC to probe the universe at very high redshifts.Comment: 11 pages, 2 figures. accepted by ApJS, Spizter Special Issu
Far Infrared Source Counts at 70 and 160 microns in Spitzer Deep Surveys
We derive galaxy source counts at 70 and 160 microns using the Multiband
Imaging Photometer for Spitzer (MIPS) to map the Chandra Deep Field South
(CDFS) and other fields. At 70 microns, our observations extend upwards about 2
orders of magnitude in flux density from a threshold of 15 mJy, and at 160
microns they extend about an order of magnitude upward from 50 mJy. The counts
are consistent with previous observations on the bright end. Significant
evolution is detected at the faint end of the counts in both bands, by factors
of 2-3 over no-evolution models. This evolution agrees well with models that
indicate most ofthe faint galaxies lie at redshifts between 0.7 and 0.9. The
new Spitzer data already resolve about 23% of the Cosmic Far Infrared
Background at 70 microns and about 7% at 160 microns.Comment: Small modifications to match printed version. Models in Differential
Counts plots were changed. MIPS Source Counts are available at:
http://lully.as.arizona.edu/GTODeep/Counts/ . Accepted for Publication in
ApJS Special Issue on Spitze
The evolution of the dust temperatures of galaxies in the SFRâMâplane up to z ~ 2
We study the evolution of the dust temperature of galaxies in the SFRâM â plane up to z ⌠2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M â ) and redshift estimates, we grid the SFRâM â parameter space in several redshift ranges and estimate the mean dust temperature (T dust ) of each SFRâM â âz bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100â500ÎŒm) of our SFRâM â âz bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (L IR ), specific SFRs (SSFR; i.e., SFR/M â ), and distances with respect to the main sequence (MS) of the SFRâM â plane (i.e., Îlog(SSFR) MS = log[SSFR(galaxy)/SSFR MS (M â ,z)]). The T dust âSSFR and T dust â Îlog(SSFR) MS correlations are statistically much more significant than the T dust âL IR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ⌠2. We convert these results into a recipe to derive T dust from SFR, M â and z, valid out to z ⌠2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong T dust âÎlog(SSFR) MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the T dust âÎlog(SSFR) MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/M gas ) with Îlog(SSFR) MS as found locally by molecular gas studies. Secondly, at fixed Îlog(SSFR) MS , the constant dust temperature observed in galaxies probing wide ranges in SFR and M â can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in them. And thirdly, at high redshift, the normalisation towards hotter dust temperature of the T dust âÎlog(SSFR) MS correlation can be explained by the decrease in the metallicities of galaxies or by the increase in the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different. MS galaxies have star-forming regions with low SFEs and thus cold dust, while galaxies situated far above the MS seem to be in a starbursting phase characterised by star-forming regions with high SFEs and thus hot dust
- âŠ