751 research outputs found

    Time-scales of close-in exoplanet radio emission variability

    Get PDF
    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and tau Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetised hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is co-rotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of tau Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at tau Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.Comment: 10 pages, 7 figures, 2 tables, accepted in MNRA

    On the environment surrounding close-in exoplanets

    Get PDF
    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e., the stellar wind) much denser than the local conditions encountered around the solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9 to 8.0 ×1013M\times 10^{-13} M_{\odot}/yr) and the wind properties at the position of the hot-Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are super-magnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1 to 5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13 mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g., SKA). Radio emission from systems having closer hot-Jupiters, such as from tau Boo b or HD189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emission.Comment: 15 pages, 5 figures, accepted to MNRA

    Modeling the RV jitter of early M dwarfs using tomographic imaging

    Full text link
    In this paper we show how tomographic imaging (Zeeman Doppler Imaging, ZDI) can be used to characterize stellar activity and magnetic field topologies, ultimately allowing to filter out the radial velocity (RV) activity jitter of M-dwarf moderate rotators. This work is based on spectropolarimetric observations of a sample of five weakly-active early M-dwarfs (GJ 205, GJ 358, GJ 410, GJ479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin i and RV jitters in the range 1-2 km/s and 2.7-10.0 m/s rms respectively. Using a modified version of ZDI applied to sets of phase-resolved Least-Squares- Decon- volved (LSD) profiles of unpolarized spectral lines, we are able to characterize the distribution of active regions at the stellar surfaces. We find that darks spots cover less than 2% of the total surface of the stars of our sample. Our technique is e cient at modeling the rotationally mod- ulated component of the activity jitter, and succeeds at decreasing the amplitude of this com- ponent by typical factors of 2-3 and up to 6 in optimal cases. From the rotationally modulated time-series of circularly polarized spectra and with ZDI, we also reconstruct the large-scale magnetic field topology. These fields suggest that bi-stability of dynamo processes observed in active M dwarfs may also be at work for moderately active M dwarfs. Comparing spot distributions with field topologies suggest that dark spots causing activity jitter concentrate at the magnetic pole and/or equator, to be confirmed with future data on a larger sample.Comment: 34 pages, accepted for publication in MNRA

    A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771

    Full text link
    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 MM_\odot stars. Methods. We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results. The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor

    Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    Get PDF
    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. [ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Ground-based photometry of space-based transit detections: Photometric follow-up of the CoRoT mission

    Get PDF
    The motivation, techniques and performance of the ground-based photometric follow-up of transit detections by the CoRoT space mission are presented. Its principal raison d'\^{e}tre arises from the much higher spatial resolution of common ground-based telescopes in comparison to CoRoT's cameras. This allows the identification of many transit candidates as arising from eclipsing binaries that are contaminating CoRoT's lightcurves, even in low-amplitude transit events that cannot be detected with ground-based obervations. For the ground observations, 'on'-'off' photometry is now largely employed, in which only a short timeseries during a transit and a section outside a transit is observed and compared photometrically. CoRoT planet candidates' transits are being observed by a dedicated team with access to telescopes with sizes ranging from 0.2 to 2 m. As an example, the process that led to the rejection of contaminating eclipsing binaries near the host star of the Super-Earth planet CoRoT-7b is shown. Experiences and techniques from this work may also be useful for other transit-detection experiments, when the discovery instrument obtains data with a relatively low angular resolution.Comment: Accepted for the A&A special issue on CoRo

    PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    Full text link
    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anti-correlated with the radial velocity one, as in the case of stellar spots. In those cases, the full width half maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We review all the spectroscopic diagnoses reported in the literature so far, especially the ones to monitor the line asymmetry. We estimate their uncertainty and compare their sensitivity to blends. Based on that, we recommend the use of BiGauss which is the most sensitive diagnosis to monitor line-profile asymmetry. In this paper, we also investigate the sensitivity of the radial velocities to constrain blend scenarios and develop a formalism to estimate the level of dilution of a blended signal. Finally, we apply our blend model to re-analyse the spectroscopic diagnoses of HD16702, an unresolved face-on binary which exhibits bisector variations.Comment: Accepted for publication in MNRA

    CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star

    Get PDF
    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (m_V = 16) candidate revealed an eclipsing binary composed of a late F-type primary (T_eff = 6090 +/- 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 +/- 0.011 M_Sun, and a radius of 0.104 +0.026/-0.006 R_Sun, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5%-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models.Comment: Accepted for publication in Astronomy & Astrophysics, 8 pages, 10 figure

    On the environment surrounding close-in exoplanets

    Get PDF
    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e. the stellar wind) much denser than the local conditions encountered around the Solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b and HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9-8.0 × 10−13 M⊙ yr−1) and the wind properties at the position of the hot Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are supermagnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1-5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g. Square Kilometre Array). Radio emission from systems having closer hot Jupiters, such as from τBoob or HD189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emissio
    corecore