45,881 research outputs found

    A new way to see inside black holes

    Full text link
    Black holes are real astrophysical objects, but their interiors are hidden and can only be "observed" through mathematics. The structure of rotating black holes is typically illustrated with the help of special coordinates. But any such coordinate choice necessarily results in a distorted view, just as the choice of projection distorts a map of the Earth. The truest way to depict the properties of a black hole is through quantities that are coordinate-invariant. We compute and plot all the independent curvature invariants of rotating, charged black holes for the first time, revealing a landscape that is much more beautiful and complex than usually thought.Comment: 4 pages, 3 figures, published in Bridges Baltimore 2015: Mathematics, Music, Art, Architecture, Culture (Phoenix, AZ: Tessellations Publishing, 2015), 479-482. Revised to fix a referenc

    Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Get PDF
    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, boneā€™s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p\u3c0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure

    Ga^+ beam lithography for nanoscale silicon reactive ion etching

    Get PDF
    By using a dry etch chemistry which relies on the highly preferential etching of silicon, over that of gallium (Ga), we show resist-free fabrication of precision, high aspect ratio nanostructures and microstructures in silicon using a focused ion beam (FIB) and an inductively coupled plasma reactive ion etcher (ICP-RIE). Silicon etch masks are patterned via Ga^+ ion implantation in a FIB and then anisotropically etched in an ICP-RIE using fluorinated etch chemistries. We determine the critical areal density of the implanted Ga layer in silicon required to achieve a desired etch depth for both a Pseudo Bosch (SF_6/C_4F_8) and cryogenic fluorine (SF_6/O_2) silicon etching. High fidelity nanoscale structures down to 30 nm and high aspect ratio structures of 17:1 are demonstrated. Since etch masks may be patterned on uneven surfaces, we utilize this lithography to create multilayer structures in silicon. The linear selectivity versus implanted Ga density enables grayscale lithography. Limits on the ultimate resolution and selectivity of Ga lithography are also discussed

    Wind data from the 250-foot /76.2-meter/ tower at Wallops Island, Virginia

    Get PDF
    Statistical evaluation of sampled wind data from anemometers mounted on meteorological tower on Wallops Islan

    The Evolution of Male-Biased Dispersal under the Joint Selective Forces of Inbreeding Load and Demographic and Environmental Stochasticity

    Get PDF
    Acknowledgments We thank G. Bocedi, S. Palmer, and three anonymous reviewers for helpful comments on earlier drafts. R.C.H. was funded by the Natural Environment Research Council (1271380). Simulations were performed on the University of Aberdeenā€™s Maxwell high performance computing cluster.Peer reviewedPublisher PD

    Evaluation of directionally solidified eutectic superalloys for turbine blade applications

    Get PDF
    Alloys from the following systems were selected for property evaluation: (1) gamma/gamma-Mo (Ni-base, rods of Mo); (2) gamma-beta (Ni-base, lamellae or rods of (Ni, Fe/Co Al); and (3) gamma-gamma (Ni-base rods of Ni3Al gamma). The three alloys were subjected to longitudinal and transverse tensile and rupture tests from 750 C to 1100 C, longitudinal shear strength was measured at several temperatures, resistance to thermal cycling to 1150 C was determined, cyclic oxidation resistance was evaluated at 750 C and 1100 C, and each system was directionally solidified in an alumina shell mold turbine shape to evaluate mold/metal reactivity. The gamma/gamma Mo system has good rupture resistance, transverse properties and processability, and is a high potential system for turbine blades. The gamma-beta system has good physical properties and oxidation resistance, and is a potential system for turbine vanes. The gamma-gamma system has good high temperature rupture resistance and requires further exploratory research

    The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model

    Full text link
    In this numerical study, we investigate the role of intrinsic heterogeneities of cardiac tissue due to M cells in the generation and maintenance of reentrant excitations using the detailed Luo-Rudy dynamic model. This model has been extended to include a description of the long QT 3 syndrome, and is studied in both one dimension, corresponding to a cable traversing the ventricular wall, and two dimensions, representing a transmural slice. We focus on two possible mechanisms for the generation of reentrant events. We first investigate if early-after-depolarizations occurring in M cells can initiate reentry. We find that, even for large values of the long QT strength, the electrotonic coupling between neighboring cells prevents early-after-depolarizations from creating a reentry. We then study whether M cell domains, with their slow repolarization, can function as wave blocks for premature stimuli. We find that the inclusion of an M cell domain can result in some cases in reentrant excitations and we determine the lifetime of the reentry as a function of the size and geometry of the domain and of the strength of the long QT syndrome
    • ā€¦
    corecore