528 research outputs found
A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato
ETHYLENE-INSENSITIVE3/ETHYLENE-INSENSITIVE3-like (EIN3/EIL) transcription factors are important downstream components of the ethylene transduction pathway known to regulate the transcription of early ethylene-responsive genes in plants. Previous studies have shown that phosphorylation can repress their transcriptional activity by promoting protein degradation. The present study identifies a new phosphorylation region named EPR1 (EIN3/EIL phosphorylation region 1) in tomato EIL1 proteins. The functional significance of EPR1 was tested by introducing mutations in this region of the Sl-EIL1 gene and by expressing these mutated versions in transgenic tomato plants. Transient expression data and phenotypic analysis of the transgenic lines indicated that EPR1 is essential for the transcriptional activity of Sl-EIL1. Moreover, mutation in the EPR1 site that prevents phosphorylation abolishes ethylene constitutive responses normally displayed by the Sl-EIL1-overexpressing lines. Bimolecular fluorescence complementation (BiFC) studies showed that the presence of a functional phosphorylation site within EPR1 is instrumental in the dimerization of Sl-EIL1 proteins. The results illuminate a new molecular mechanism for the control of EIN3/EIL activity and propose a model where phosphorylation within the EPR1 promotes the dimerization process allowing the initiation of EIL-mediated transcription of early ethylene-regulated genes
Validation of learning style measures: implications for medical education practice
It is unclear which learners would most benefit from the more individualised, student-structured, interactive approaches characteristic of problem-based and computer-assisted learning. The validity of learning style measures is uncertain, and there is no unifying learning style construct identified to predict such learners. Objective This study was conducted to validate learning style constructs and to identify the learners most likely to benefit from problem-based and computer-assisted curricula. Methods Using a cross-sectional design, 3 established learning style inventories were administered to 97 post-Year 2 medical students. Cognitive personality was measured by the Group Embedded Figures Test, information processing by the Learning Styles Inventory, and instructional preference by the Learning Preference Inventory. The 11 subscales from the 3 inventories were factor-analysed to identify common learning constructs and to verify construct validity. Concurrent validity was determined by intercorrelations of the 11 subscales. Results A total of 94 pre-clinical medical students completed all 3 inventories. Five meaningful learning style constructs were derived from the 11 subscales: student- versus teacher-structured learning; concrete versus abstract learning; passive versus active learning; individual versus group learning, and field-dependence versus field-independence. The concurrent validity of 10 of 11 subscales was supported by correlation analysis. Medical students most likely to thrive in a problem-based or computer-assisted learning environment would be expected to score highly on abstract, active and individual learning constructs and would be more field-independent. Conclusions Learning style measures were validated in a medical student population and learning constructs were established for identifying learners who would most likely benefit from a problem-based or computer-assisted curriculum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72443/1/j.1365-2929.2006.02476.x.pd
Best-of-Three Contests: Experimental Evidence
We conduct an experimental analysis of a best-of-three Tullock contest. Intermediate prizes lead to higher efforts, while increasing the role of luck (as opposed to effort) leads to lower efforts. Both intermediate prizes and luck reduce the probability of contest ending in two rounds. The patterns of players‟ efforts and the probability that a contest ends in two rounds is consistent with „strategic momentum‟, i.e. momentum generated due to strategic incentives inherent in the contest. We do not find evidence for „psychological momentum‟, i.e. momentum which emerges when winning affects players‟ confidence. Similar to previous studies of contests, we find significantly higher efforts than predicted and strong heterogeneity in effort between subjects
Beyond directed evolution: Darwinian selection as a tool for synthetic biology
Synthetic biology is an engineering approach that seeks to design and construct new biological parts, devices and systems, as well as to re-design existing components. However, rationally designed synthetic circuits may not work as expected due to the context-dependence of biological parts. Darwinian selection, the main mechanism through which evolution works, is a major force in creating biodiversity and may be a powerful tool for synthetic biology. This article reviews selection-based techniques and proposes strict Darwinian selection as an alternative approach for the identification and characterization of parts. Additionally, a strategy for fine-tuning of relatively complex circuits by coupling them to a master standard circuit is discussed
Putative cis-regulatory elements in genes highly expressed in rice sperm cells
<p>Abstract</p> <p>Background</p> <p>The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of <it>cis</it>-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression.</p> <p>Findings</p> <p>We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using <it>in silico </it>prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes.</p> <p>Conclusions</p> <p>Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression.</p
Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis
<p>Abstract</p> <p>Background</p> <p>Proper patterning of the follicle cell epithelium over the egg chamber is essential for the <it>Drosophila </it>egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that <it>lethal(2)giant larvae </it>(<it>lgl</it>), a <it>Drosophila </it>tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, <it>scribble </it>(<it>scrib</it>) and <it>discs large </it>(<it>dlg</it>), in the epithelial patterning.</p> <p>Results</p> <p>We found that removal of <it>scrib </it>or <it>dlg </it>function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in <it>scrib/dlg </it>at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that <it>scrib </it>genetically interacts with <it>dlg </it>in regulating posterior patterning of the epithelium.</p> <p>Conclusion</p> <p>In this study we provide evidence that <it>scrib </it>and <it>dlg </it>function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that <it>scrib </it>and <it>dlg </it>act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of <it>scrib/dlg </it>in controlling epithelial polarity and cell proliferation during development.</p
Regulation of Glucose Homeostasis by KSR1 and MARK2
Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine
Grapevine is an extremely important crop worldwide.
In southern Europe, post-flowering phases of the growth
cycle can occur under high temperatures, excessive light, and
drought conditions at soil and/or atmospheric level. In this
study, we subjected greenhouse grown grapevine, variety
Aragonez, to two individual abiotic stresses, water deficit stress
(WDS), and heat stress (HS). The adaptation of plants to stress
is a complex response triggered by cascades of molecular
networks involved in stress perception, signal transduction,
and the expression of specific stress-related genes and metabolites.
Approaches such as array-based transcript profiling allow
assessing the expression of thousands of genes in control
and stress tissues. Using microarrays, we analyzed the leaf
transcriptomic profile of the grapevine plants. Photosynthesis
measurements verified that the plants were significantly affected
by the stresses applied. Leaf gene expression was obtained
using a high-throughput transcriptomic grapevine array, the
23K custom-made Affymetrix Vitis GeneChip. We identified
1,594 genes as differentially expressed between control and
treatments and grouped them into ten major functional categories
using MapMan software. The transcriptome of Aragonez
was more significantly affected by HS when compared with
WDS. The number of genes coding for heat-shock proteins and
transcription factors expressed solely in response to HS suggesting
their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was
observed at the level of AP2/ERF transcription factors
- …