359 research outputs found
Etnomatemáticas en artesanías de trenzado: un modelo metodológico para investigación
El área temática del Proyecto de Investigación, parte del cual exponemos en este artículo, es Etnomatemáticas. El propósito de investigación es la caracterización y valoración del conocimiento socio-cultural, implícito en la práctica diaria. En el contexto geográfico de Argentina, investigamos la matemática implícita en artesanías de trenzados, elaborando para esto un método propio de análisis etnomatemático. El instrumento metodológico MOMET que se crea para este estudio interpretativo formal de artesanías de trenzado tiene en cuenta dos aspectos: el producto final de la labor artesanal analizado en su complejidad global y el proceso que se lleva a cabo para realizarlo. La herramienta metodológica elaborada está constituida por dos componentes: un Método de análisis etnográfico (MET) y un Modelo de análisis matemático (MOM). El conjunto de los dos nos proporciona el instrumento metodológico MOMET, que permite la Modelización Etnomatemática de las artesanías de trenzado
Effect of physical activity, nutritional education, and consumption of extra virgin olive oil on lipid, physiological and anthropometric profiles in a pediatric population
BACKGROUND. The aim of this study was to determine the effects of nutritional education and vigorous physical activity on health-related parameters. METHODS. The sample group consisted of 134 children from 5 rurally located schools. Participants were divided between 5 different experimental groups: control group (CG), physical activity group (PA), nutritional education group (NE), combined intervention group (PA+NE), and a combined intervention group with additional substitution of normally used oil for extra virgin olive oil (EVOO; PA+NE+EVOO). The intervention consisted of 60 minute sessions of physical activity held twice a week as well as nutritional education sessions held over 6 months. RESULTS. Students in the groups receiving physical activity reduced their fat percentage and increased their muscle mass post intervention. At post-test the lipid profile improved in all intervention groups. The proportion of macronutrients and dietary cholesterol improved in the groups receiving nutritional education. The post-test comparison showed significantly lower fat percentage, sum of skinfolds and waist circumference in NE relative to CG and PA relative to CG. Diastolic blood pressure and glycaemia were significantly lower in PA+NE+EVOO relative to CG. CONCLUSION. A school-based program consisting of nutritional education or nutritional education plus a physical activity program showed a positive effect on health-related parameters in children
The Role of Forest Elephants in Shaping Tropical Forest-Savanna Coexistence
Forest edges that border savanna are dynamic features of tropical landscapes. Although the role of fire in determining edge dynamics has been relatively well explored, the role of mega-herbivores, specifically elephants, has not received as much attention. We investigated the role of forest elephants in shaping forest edges of the forest–savanna mosaic in Lopé National Park, Gabon. Using forty camera traps, we collected 1.2 million images between May 2016 and June 2017. These images were classified by over 10,000 volunteers through an online citizen science platform. These data were combined with a 33-year phenology dataset on elephant-favoured fruiting tree species, and field measurements of elephant browsing preferences and damage. Our results showed a strong relationship between forest elephant density at the forest edge and fruit availability. When fruit availability was high, elephant density at the edge reached values nearly double the highest densities ever reported in any other part of the landscape (7.5 elephants km−2 in this study vs the previous highest estimate of 4 elephants km−2). The highest elephant densities occurred at the end of the dry season, but even outside of this high density period elephant density at the forest edge (2.4 elephants km−2) was more than double what other studies estimate for forest interiors with low human hunting pressure (1 elephant km−2). We found forest elephants to be selective browsers, but their browsing was non-destructive (in contrast to savanna elephants) and had little effect on tree size demography. Elephant paths acted as firebreaks during savanna burning, making them inadvertent protectors of the fire-sensitive forest and contributing to the stabilising feedbacks that allow forest and savanna to coexist in tropical landscapes
Circulating linoleic acid at the time of myocardial infarction and risk of primary ventricular fibrillation
Primary ventricular fibrillation (PVF) is a major driver of cardiac arrest in the acute phase of ST-segment elevation myocardial infarction (STEMI). Enrichment of cardiomyocyte plasma membranes with dietary polyunsaturated fatty acids (PUFA) reduces vulnerability to PVF experimentally, but clinical data are scarce. PUFA status in serum phospholipids is a valid surrogate biomarker of PUFA status in cardiomyocytes within a wide range of dietary PUFA. In this nested case-control study (n = 58 cases of STEMI-driven PVF, n = 116 control non-PVF STEMI patients matched for age, sex, smoking status, dyslipidemia, diabetes mellitus and hypertension) we determined fatty acids in serum phospholipids by gas-chromatography, and assessed differences between cases and controls, applying the Benjamini-Hochberg procedure on nominal P-values to control the false discovery rate (FDR). Significant differences between cases and controls were restricted to linoleic acid (LA), with PVF patients showing a lower level (nominal P = 0.002; FDR-corrected P = 0.027). In a conditional logistic regression model, each one standard deviation increase in the proportion of LA was related to a 42% lower prevalence of PVF (odds ratio = 0.58; 95% confidence interval, 0.37, 0.90; P = 0.02). The association lasted after the inclusion of confounders. Thus, regular consumption of LA-rich foods (nuts, oils from seeds) may protect against ischemia-driven malignant arrhythmias
Corrigendum to: Comparative study of obstetric antiphospholipid syndrome (OAPS) and non-criteria obstetric APS (NC-OAPS): report of 1640 cases from EUROAPS registry
Rheumatology 2020;59:1306–1314. doi:https://doi.org/10.1093/rheumatology/kez419
In the original article, the affiliation of co-author Cecilia Beatrice Chighizola should have read: “Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, Milan, Italy”. These details have been corrected only in this corrigendum to preserve the published version of record
Orion Exploration Flight Test Post-Flight Inspection and Analysis
The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight
Dynamic and influential interaction of cancer cells with normal epithelial cells in 3D culture
BACKGROUND: The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. METHODS: GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. RESULTS: In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. CONCLUSIONS: This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12935-014-0108-6) contains supplementary material, which is available to authorized users
Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink
- …